【題目】如圖,△ABC是邊長(zhǎng)為6 cm的等邊三角形,動(dòng)點(diǎn)PA出發(fā),以3 cm/s的速度,沿A-B-CC運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)QC出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= ____s,△APQ是直角三角形.

【答案】

【解析】

分析題意可知,需分兩種情況討論,①當(dāng)∠QPA=90°時(shí),②當(dāng)∠PQA=90°時(shí),分別作出圖形,利用含30°角的直角三角形的性質(zhì)列方程求解即可.

解:由題意可得,分兩種情況討論,

①當(dāng)∠QPA=90°時(shí),如圖:

AC=6CQ=t,AP=3t

AQ=6-t,

∵∠A=60°

AQ=2AP,即6-t=2×3t

解得:t=;

②當(dāng)∠PQA=90°時(shí),如圖:

CQ=tCP=12-3t,∠C=60°,

CP=2CQ,即12-3t=2t,

解得:t=

綜上所述,當(dāng)t=秒時(shí),APQ是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請(qǐng)判斷BD、CE有何大小、位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本目標(biāo)與評(píng)定中有這樣一道思考題:如圖鋼架中∠A=20°,焊上等邊的鋼條P1P2,P2P3P3P4,P4P5來(lái)加固鋼架,若P1A=P1P2,問(wèn)這樣的鋼條至多需要多少根?

1)請(qǐng)將下列解答過(guò)程補(bǔ)充完整:

答案:∵∠A=20°,P1A=P1P2,∴∠P1P2A=   .

P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°,

同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3=   ,

∴∠BP4P5=CP5P4=100°90°

∴對(duì)于射線P4B上任意一點(diǎn)P6(點(diǎn)P4除外),P4P5P5P6,

∴這樣的鋼架至多需要   .

2)繼續(xù)探究:當(dāng)∠A=15°時(shí),這樣的鋼條至多需要多少根?

3)當(dāng)這樣的鋼條至多需要8根時(shí),探究∠A的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C03).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司招聘外賣送餐員,送餐員的月工資由底薪1000元加上外賣送單補(bǔ)貼送一次外賣稱為一單構(gòu)成,外賣送單補(bǔ)貼的具體方案如下:

外賣送單數(shù)量

補(bǔ)貼

每月不超過(guò)500

6

超過(guò)500單但不超過(guò)m單的部分

8

超過(guò)m單的部分

10

若某“外賣小哥”4月份送餐400單,則他這個(gè)月的工資總額為多少元?

設(shè)5月份某“外賣小哥”送餐x,所得工資為y元,求yx的函數(shù)關(guān)系式.

若某“外賣小哥”5月份送餐800單,所得工資為6500元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫(huà)出平移后得到的A1B1C1

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫(huà)出旋轉(zhuǎn)后的A1B2C2

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且ab滿足|a-3b|+(a+b-4)=0.假定這一帶長(zhǎng)江兩岸河堤是平行的,即PQMN,且∠BAN=45°

1)求ab的值;

2)若燈B射線先轉(zhuǎn)動(dòng)20秒,燈A射線才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?

3)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過(guò)CCDACPQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某項(xiàng)工程由甲乙兩隊(duì)合作12天可以完成,供需工程費(fèi)用13800,乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多150

1甲乙兩隊(duì)單獨(dú)完成這項(xiàng)工程分別需要多少天?

2若工程管理部門(mén)決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成這項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)試說(shuō)明△ABC是等腰三角形;

2)已知SABC40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒2cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以每秒1cm速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若△DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

1 2 備用圖

查看答案和解析>>

同步練習(xí)冊(cè)答案