如圖,圓錐底面圓的半徑為2cm,母線長(zhǎng)為4cm,點(diǎn)B為母線的中點(diǎn).若一只螞蟻從A點(diǎn)開始經(jīng)過(guò)圓錐的側(cè)面爬行到B點(diǎn),則螞蟻爬行的最短路徑長(zhǎng)為    cm.
【答案】分析:要求螞蟻爬行的最短距離,需將圓錐的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.
解答:解:由題意知,圓錐底面圓的半徑為2cm,故底面周長(zhǎng)等于4πcm.
設(shè)圓錐的側(cè)面展開后的扇形圓心角為n°,
根據(jù)底面周長(zhǎng)等于展開后扇形的弧長(zhǎng)得,4π=,
解得:n=180,所以展開圖中∠A′OB=90°,
根據(jù)勾股定理求得A′B===2,
故答案為:2
點(diǎn)評(píng):此題主要考查了平面展開圖中最短路徑問(wèn)題,利用圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 北師大(新課標(biāo)2001/3年初審) 北師大版 題型:044

如圖,在直角坐標(biāo)系xOy中,已知菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正半軸上,OA邊在直線y=x上,AB邊在直線y=-x+上.

(1)根據(jù)題意,直接寫出菱形頂點(diǎn),O、A、B、C的坐標(biāo),以及邊長(zhǎng)和∠AOC的度數(shù);

(2)在OB上有一動(dòng)點(diǎn)P,以O(shè)為圓心,OP為半徑畫弧MN,分別交OA、OC于點(diǎn)M、N(M、N可以與A、C重合),作⊙Q與AB、BC、弧MN都相切.設(shè)⊙Q的半徑為R,OP的長(zhǎng)為y,求y與R之間的函數(shù)關(guān)系式;

(3)以O(shè)為圓心,OA為半徑作扇形OAC,請(qǐng)問(wèn)在菱形OABC中,除去扇形OAC后的剩余部分內(nèi),是否可以作出一個(gè)圓,使所得的圓是以扇形OAC為側(cè)面的圓錐的底面,若存在,求出這個(gè)圓的面積;若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案