【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

從上表可知,下列說法正確的有多少個

①拋物線與x軸的一個交點(diǎn)為(﹣2,0);

②拋物線與y軸的交點(diǎn)為(0,6);

③拋物線的對稱軸是直線x=;

④拋物線與x軸的另一個交點(diǎn)為(3,0);

⑤在對稱軸左側(cè),yx增大而減少.

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

由圖表可知(0,6),(1,6)是拋物線上的兩個對稱點(diǎn),對稱軸是兩點(diǎn)橫坐標(biāo)的平均數(shù),即x=,根據(jù)拋物線的對稱性,逐一判斷.

根據(jù)圖表,拋物線與x軸的一個交點(diǎn)為(﹣2,0),∴①正確;

根據(jù)圖表,拋物線與y軸交與(0,6),②正確;
∵拋物線經(jīng)過點(diǎn)(0,6)和(1,6),
∴對稱軸為x=,
∴③正確;

設(shè)拋物線經(jīng)過點(diǎn)(x,0),
x==
解得:x=3
∴拋物線一定經(jīng)過(3,0),④正確;

在對稱軸左側(cè),yx增大而增大∴⑤錯誤

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某海監(jiān)船以20海里/小時的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達(dá)C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為( 。

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,每個小正方形邊長都是1.

(1)按要求作圖:

①以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,將ABC逆時針旋轉(zhuǎn)90°得到A1B1C1

②作出A1B1C1關(guān)于原點(diǎn)成中心對稱的中心對稱圖形A2B2C2

(2)A2B2C2中頂點(diǎn)B2坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC,ACD,E兩點(diǎn),過點(diǎn)D作⊙O的切線,交AC于點(diǎn)F,交AB的延長線于點(diǎn)G.

(1)求證:EF=CF;

(2)若cosABC=,AB=10,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的內(nèi)切圓與各邊分別相切于點(diǎn),,那么下列敘述錯誤的是( )

A. 點(diǎn)的三條角平分線的交點(diǎn) B. 點(diǎn)的三條中線的交點(diǎn)

C. 點(diǎn)的三條邊的垂直平分線的交點(diǎn) D. 一定是銳角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O是等腰直角三角形ABC斜邊上的中點(diǎn),AB=BC,EAC上一點(diǎn),連結(jié)EB.

(1) 如圖1,若點(diǎn)E在線段AC上,過點(diǎn)AAMBE,垂足為M,交BO于點(diǎn)F.求證:OE=OF;

(2)如圖2,若點(diǎn)EAC的延長線上,AMBE于點(diǎn)M,交OB的延長線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-1,0),B4,0C0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)Px軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)已知點(diǎn)F0,),當(dāng)點(diǎn)Px軸上運(yùn)動時,試求m為何值時,四邊形DMQF是平行四邊形?

查看答案和解析>>

同步練習(xí)冊答案