精英家教網 > 初中數學 > 題目詳情
在矩形ABCD中,AB=4,BC=2,以A為坐標原點,AB所在的直線為x軸,建立直角坐標系.然后將矩形ABCD繞點A逆時針旋轉,使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經過B,E,G三點的二次函數解析式;
(2)設直線EF與(1)的二次函數圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設P為(1)的二次函數圖象上的一點,BP∥EG,求P點的坐標.

【答案】分析:(1)根據旋轉的性質可知:AG=AD,AE=AB,由此可求出E、G的坐標,用待定系數法即可求出拋物線的解析式.
(2)先根據拋物線的解析式求出H點的坐標,然后根據G、F、B、H的坐標來求出四邊形的周長即可.
(3)先求出直線GE的解析式,已知直線BP與GE平行,因此兩直線的斜率相同,可據此求出直線BP的解析式,然后聯(lián)立拋物線的解析式即可求出P點的坐標.
解答:解:(1)由題意可知,AE=AB=4,AG=AD=BC=2.
∴B(4,0),E(0,4),G(-2,0).
設經過B,E,G三點的二次函數解析式是y=a(x+2)(x-4).
把E(0,4)代入之,求得a=-
∴所求的二次函數解析式是:y=-(x+2)(x-4)=-x2+x+4.

(2)由題意可知,四邊形AEFG為矩形.
∴FH∥GB,且GB=6.
∵直線y=4與二次函數圖象的交點H的坐標為H(2,4),
∴EH=2.
∵G與B,E與H關于拋物線的對稱軸對稱,
∴BH=EG==2
∴四邊形EGBH的周長
=2+6+2×2
=8+4

(3)易知直線EG的解析式為y=2x+4,
可是直線PB的解析式為y=2x+h,
則有8+h=0,h=-8;
∴直線BP的解析式為y=2x-8;
聯(lián)合一次,二次函數解析式組成方程組
解得(此組數為B點坐標)
∴所求的P點坐標為P(-6,-20).
點評:此題的綜合性較強,考查的知識點較多,但是解法較多,使試題的切入點也較多,很容易入題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設BP=x,梯形ABPQ的面積為y,求y與x之間的函數關系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在矩形ABCD中,F是BC邊上一點,AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設CF=x,DE=y,求y與x的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習冊答案