【題目】如圖,用尺規(guī)作的平分線的方法如下:以為圓心,任意長為半徑畫弧交,于點,再分別以點,為圓心,大于的長為半徑畫弧,兩弧交于點,作射線.由作法得,從而得兩角相等.那么這兩個三角形全等的根據(jù)是(

A.B.C.D.

【答案】B

【解析】

認真閱讀作法,從角平分線的作法得出△OCP與△ODP的兩邊分別相等,加上公共邊相等,于是兩個三角形符合SSS判定方法要求的條件,答案可得.

解:∵以O為圓心,任意長為半徑畫弧交OA,OBC,D,即OC=OD;
以點CD為圓心,以大于長為半徑畫弧,兩弧交于點P,即CP=DP;

∴在△OCP和△ODP

∴△OCP≌△ODPSSS).
故選:B

本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AASHL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平分,垂足為,點上,,分別與線段,相交于,.

(1)求證:;

(2)若,請你判斷的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形的三條邊相等,三個角都等于,如圖,都是邊三角形,連接.

1)如果點在同一條直線上,如圖①所示,試說明:;

2)如果點轉(zhuǎn)過一個角度,如圖②所示,(1)中的結(jié)論還能否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,n),B(24)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點;

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求直線ABx軸的交點C的坐標及△AOB的面積;

(3)求不等式kx+b<0的解集(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A.有且只有一條直線與已知直線垂直;

B.從直線外一點到這條直線的垂線段,叫做這點到這條直線距離;

C.互相垂直的兩條線段一定相交;

D.直線外一點與直線上各點連接而成的所有線段中,最短線段的長度是,則點到直線的距離是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax+2+ka0),點A(﹣4y1)、B(﹣2,y2)、C2,y3)是圖象上的三個點,則y1、y2y3的大小關(guān)系是_____(用“<”連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,點CD在線段AF上,ADCDCF,∠ABC=∠DEF90°,ABEF

1)若BC2AB2,求BD的長;

2)求證:四邊形BCED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在第1中,;在邊上任取一點,延長,使,得到第2;在邊上任取一點,延長,使,得到第3按此做法繼續(xù)下去,則第個三角形中以為頂點的底角度數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案