閱讀:如圖1把兩塊全等的含45°的直角三角板ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,把三角板ABC固定不動,讓三角板DEF繞點D旋轉(zhuǎn),兩邊分別與線段AB、BC相交于點P、Q,易說明△APD∽△CDQ.
猜想(1):如圖2,將含30°的三角板DEF(其中∠EDF=30°)的銳角頂點D與等腰三角形ABC(其中∠ABC=120°)的底邊中點O重合,兩邊分別與線段AB、BC相交于點P、Q.寫出圖中的相似三角形
 
(直接填在橫線上);
驗證(2):其它條件不變,將三角板DEF旋轉(zhuǎn)至兩邊分別與線段AB的延長線、邊BC相交于點P、Q.上述結(jié)論還成立嗎?請你在圖3上補全圖形,并說明理由.
連接PQ,△APD與△DPQ是否相似?為什么?
探究(3):根據(jù)(1)(2)的解答過程,你能將兩三角板改為一個更為一般的條件,使得(1)成立?
精英家教網(wǎng)
分析:(1)通過角的轉(zhuǎn)化得出∠APD=∠CDQ,進而可得出△APD∽△CQD;
(2)與延長線交于一點,但并不影響∠APD=∠CDQ,所以仍成立;
(3)只要△ABC是等腰三角形,且∠EDF=∠A,結(jié)論就成立.
解答:解:(1)∵∠ABC=120°,
∴∠A=∠C=30°,精英家教網(wǎng)
∵∠ADP+∠APD=150°,∠ADP+∠QDC=150°,
∴∠APD=∠CDQ,
∴△APD∽△CDQ;

(2)成立;如圖所示,
∵∠ADP+∠APD=150°,∠ADP+∠QDC=150°,
∴∠APD=∠CDQ,
又∠A=∠C,
∴△APD∽△CDQ,精英家教網(wǎng)
∵△APD∽△CDQ,
AP
CD
=
AD
CQ
=
PD
DQ
,
∵AD=CD,
AP
AD
=
PD
DQ
,
∵∠A=∠C=∠PDQ,
∴△APD∽△DPQ;

(3)可以,將兩三角板改為一個更為一般的條件:AB=BC,∠EDF=∠A,D為AC中點.
點評:能夠利用一些角的轉(zhuǎn)化求解一些簡單的相似問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

24、閱讀材料,解決問題.
小聰在探索三角形中位線性質(zhì)定理證明的過程中,得到了如下啟示:一條線段經(jīng)過另一線段的中點,則延長前者,并且長度相等,就能構(gòu)造全等三角形.如圖,D是△ABC的AC邊的中點,E為AB上任一點,延長ED至F,使DF=DE,連接CF,則可得△CFD≌△AED,從而把△ABC剪拼成面積相等的四邊形BCFE.你能從小聰?shù)姆此贾械玫絾⑹締幔?br />(1)如圖1,已知△ABC,試著剪一刀,使得到的兩塊圖形能拼成平行四邊形.
①把剪切線和拼成的平行四邊形畫在圖1上,并指出剪切線應(yīng)符合的條件.
②思考并回答:要使上述剪拼得到的平行四邊形成為矩形,△ABC的邊或角應(yīng)符合什么條件?菱形呢?正方形呢?(直接寫出用符號表示的條件)
(2)如圖2,已知銳角△ABC,試著剪兩刀,使得到的三塊圖形能拼成矩形,把剪切線和拼成的矩形畫在圖2上,并指出剪切線應(yīng)符合的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀材料,解決問題.
小聰在探索三角形中位線性質(zhì)定理證明的過程中,得到了如下啟示:一條線段經(jīng)過另一線段的中點,則延長前者,并且長度相等,就能構(gòu)造全等三角形.如圖,D是△ABC的AC邊的中點,E為AB上任一點,延長ED至F,使DF=DE,連接CF,則可得△CFD≌△AED,從而把△ABC剪拼成面積相等的四邊形BCFE.你能從小聰?shù)姆此贾械玫絾⑹締幔?br/>(1)如圖1,已知△ABC,試著剪一刀,使得到的兩塊圖形能拼成平行四邊形.
①把剪切線和拼成的平行四邊形畫在圖1上,并指出剪切線應(yīng)符合的條件.
②思考并回答:要使上述剪拼得到的平行四邊形成為矩形,△ABC的邊或角應(yīng)符合什么條件?菱形呢?正方形呢?(直接寫出用符號表示的條件)
(2)如圖2,已知銳角△ABC,試著剪兩刀,使得到的三塊圖形能拼成矩形,把剪切線和拼成的矩形畫在圖2上,并指出剪切線應(yīng)符合的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀:如圖1把兩塊全等的含45°的直角三角板ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,把三角板ABC固定不動,讓三角板DEF繞點D旋轉(zhuǎn),兩邊分別與線段AB、BC相交于點P、Q,易說明△APD∽△CDQ.
猜想(1):如圖2,將含30°的三角板DEF(其中∠EDF=30°)的銳角頂點D與等腰三角形ABC(其中∠ABC=120°)的底邊中點O重合,兩邊分別與線段AB、BC相交于點P、Q.寫出圖中的相似三角形______(直接填在橫線上);
驗證(2):其它條件不變,將三角板DEF旋轉(zhuǎn)至兩邊分別與線段AB的延長線、邊BC相交于點P、Q.上述結(jié)論還成立嗎?請你在圖3上補全圖形,并說明理由.
連接PQ,△APD與△DPQ是否相似?為什么?
探究(3):根據(jù)(1)(2)的解答過程,你能將兩三角板改為一個更為一般的條件,使得(1)成立?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀:如圖1把兩塊全等的含45°的直角三角板ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,把三角板ABC固定不動,讓三角板DEF繞點D旋轉(zhuǎn),兩邊分別與線段AB、BC相交于點P、Q,易說明△APD△CDQ.
猜想(1):如圖2,將含30°的三角板DEF(其中∠EDF=30°)的銳角頂點D與等腰三角形ABC(其中∠ABC=120°)的底邊中點O重合,兩邊分別與線段AB、BC相交于點P、Q.寫出圖中的相似三角形______(直接填在橫線上);
驗證(2):其它條件不變,將三角板DEF旋轉(zhuǎn)至兩邊分別與線段AB的延長線、邊BC相交于點P、Q.上述結(jié)論還成立嗎?請你在圖3上補全圖形,并說明理由.
連接PQ,△APD與△DPQ是否相似?為什么?
探究(3):根據(jù)(1)(2)的解答過程,你能將兩三角板改為一個更為一般的條件,使得(1)成立?

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案