已知sinα=
3
2
,且α是銳角,則α的度數(shù)是( 。
A、30°B、45°
C、60°D、不確定
分析:根據(jù)sin60°=
3
2
解答即可.
解答:解:∵α為銳角,sinα=
3
2
,sin60°=
3
2
,
∴α=60°.
故選C.
點評:此題比較簡單,只要熟知特殊角度的三角函數(shù)值即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知sinα•cosα=
1
8
,45°<α<90°,則cosα-sinα=(  )
A、
3
2
B、-
3
2
C、
3
4
D、±
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知sinα=0.6031,用計算器求銳角α=
37°5′32″
(精確到1″).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知sinαcosα=
1
8
,且0°<α<45°,則sinα-cosα的值為( 。

查看答案和解析>>

同步練習(xí)冊答案