【題目】 在學(xué)習(xí)了全等三角形和等邊三角形的知識(shí)后,張老師出了如下一道題:如圖,點(diǎn)B是線段AC上任意一點(diǎn),分別以AB、BC為邊在AC同一側(cè)作等邊△ABD和等邊△BCE,連接CD、AE分別與BE和DB交于點(diǎn)N、M,連接MN.
(1)求證:△ABE≌△DBC.
接著張老師又讓學(xué)生分小組進(jìn)行探究:你還能得出什么結(jié)論?
精英小組探究的結(jié)論是:AM=DN.
奮斗小組探究的結(jié)論是:△EMB≌△CNB.
創(chuàng)新小組探究的結(jié)論是:MN∥AC.
(2)你認(rèn)為哪一小組探究的結(jié)論是正確的?
(3)選擇其中你認(rèn)為正確的一種情形加以證明.
【答案】(1)證明見解析;(2)三個(gè)小組探究的結(jié)論都正確;(3)證明見解析
【解析】試題分析:
(1)由△ABD和△BCE都是等邊三角形可得:AB=DB,BC=BE,∠ABD=∠EBC=60°,這樣可得∠ABE=∠DBC,從而可由“SAS”證得△ABE≌△DBC;
(2)由△ABE≌△DBC可得∠EAB=∠CDB,而由已知條件易證∠DBN=∠ABD=60°,結(jié)合AB=DB可證△ABM≌△DBN,就可得AM=DN;同理可證△EBM≌△CBN;由△EBM≌△CBN可得BM=BN,結(jié)合∠DBN=60°可得△BMN是等邊三角形,從而可得∠MNB=60°=∠EBC,由此可得MN∥AC;故三個(gè)小組的探究結(jié)論都是正確的;
(3)根據(jù)(2)中的分析選擇第一個(gè)結(jié)論證明即可;
試題解析:
(1∵△ABD和△BCE都是等邊三角形,
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
∵在△ABE和△DBC中,AB=DB,∠ABE=∠DBC,BE=BC,
∴△ABE≌△DBC;
(2)三個(gè)小組探究的結(jié)論都正確;
(3)選擇證明:AM=DN,過(guò)程如下:
∵△ABE≌△DBC,
∴∠EAB=∠CDB,
∵∠ABD+∠DBE+∠EBC=180°,∠ABD=∠EBC=60°,
∴∠DBE=∠ABD=60°,
∵在△ABM和△DBN中,∠MAB=∠NDB,AB=DB,∠DBN=∠ABM,
∴△ABM≌△DBN,
∴AM=DN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點(diǎn),AE⊥CD于E,BF⊥CD交CD的延長(zhǎng)線于F,CH⊥AB于H點(diǎn),交AE于G.
(1)試說(shuō)明AH=BH
(2)求證:BD=CG.
(3)探索AE與EF、BF之間的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(2x-4,x+2)在坐標(biāo)軸上,則x的值等于( )
A. 2 B. -2 C. 2或-2 D. 非上述答案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸是直線.
(1)求拋物線的表達(dá)式;
(2)點(diǎn), 在拋物線上,若,請(qǐng)直接寫出的取值范圍;
(3)設(shè)點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)都在直線的上方,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:∠ACD是△ABC的一個(gè)外角,CA=CB.
(1)畫出∠ACD的角平分線CE.
(2)求證:CE∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.過(guò)C點(diǎn)作CG∥AD,交BA的延長(zhǎng)線于G,過(guò)A作BC的平行線交CG于H點(diǎn).
(1)若∠BAC=900,求證:四邊形ADCH是菱形;
(2)求證:△ABC∽△FCD;
(3)若DE=3,BC=8,求△FCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列已知條件,能唯一畫出△ABC的是( )
A.AB=6,BC=3,AC=9B.AB=5,BC=4,∠A=30°
C.∠C=90°,AB=6D.∠A=60°,∠B=45°,AB=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)表格估計(jì)一元二次方程x2+2x﹣4=0的一個(gè)解的范圍在( )
x | ﹣1 | 0 | 1 | 2 | 3 |
x2+2x﹣4 | ﹣5 | ﹣4 | ﹣1 | 4 | 11 |
A.﹣1<x<0
B.0<x<1
C.1<x<2
D.2<x<3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com