【題目】計(jì)算下列各式,且把結(jié)果化為只含有正整數(shù)指數(shù)的形式:
(1)(x﹣2)﹣3(yz﹣1)3 ;(2)a2b3(2a﹣1b)3
(3)(3a3b2c﹣1)﹣2(5ab﹣2c3)2;(4).
【答案】(1);(2);(3)(4)0.
【解析】(1)利用積的乘方運(yùn)算法則進(jìn)行化簡,得出即可;
(2)利用積的乘方運(yùn)算法則進(jìn)行化簡,進(jìn)而利用同底數(shù)冪的乘法運(yùn)算法則得出即可;
(3)利用積的乘方運(yùn)算法則進(jìn)行化簡,進(jìn)而利用同底數(shù)冪的乘法運(yùn)算法則得出即可;
(4)利用負(fù)整數(shù)指數(shù)冪的性質(zhì)以及有理數(shù)加減運(yùn)算法則得出即可.
解:(1)原式=x6y3z﹣3= ;
(2)原式=a2b38a﹣3b3=8a﹣1b6=
(3)原式= a﹣6b﹣4c225a2b﹣4c6= a﹣4b﹣8c8=;
(4)解:原式=1﹣4+3=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該店主購進(jìn)這兩種禮盒恰好用去9600元,且購進(jìn)A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機(jī) | 100 | 60 |
乙型挖掘機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機(jī)共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機(jī)各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形水管內(nèi)原有積水的水平面寬CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),則此時水面寬
AB為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6,AC=4.點(diǎn)P、Q分別從點(diǎn)A、B同時出發(fā),點(diǎn)P沿A→C的方向以每秒1個單位長的速度向點(diǎn)C運(yùn)動,點(diǎn)Q沿B→C的方向以每秒2個單位長的速度向點(diǎn)C運(yùn)動.當(dāng)其中一個點(diǎn)先到達(dá)點(diǎn)C時,點(diǎn)P、Q停止運(yùn)動.當(dāng)四邊形ABQP的面積是△ABC面積的一半時,求點(diǎn)P運(yùn)動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在線段CD上,EA、EB分別平分∠DAB和∠CBA,點(diǎn)F在線段AB上運(yùn)動,AD=4cm,BC=3cm,且AD∥BC.
(1)你認(rèn)為AE和BE有什么位置關(guān)系?并驗(yàn)證你的結(jié)論;
(2)當(dāng)點(diǎn)F運(yùn)動到離點(diǎn)A多少厘米時,△ADE和△AFE全等?為什么?
(3)在(2)的情況下,此時BF=BC嗎?證明你的結(jié)論并求出AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=6cm,BC=4cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長度.
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長度嗎?請你用一句簡潔的話表述你發(fā)現(xiàn)的規(guī)律.
(3)對于(1)題,如果我們這樣敘述它:“已知線段AC=6cm,BC=4cm,點(diǎn)C在直線AB上,點(diǎn)M,N分別是AC,BC的中點(diǎn),求MN的長度.”結(jié)果會有變化嗎?如果有,求出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com