已知:如圖平面內(nèi)有兩條直線AB,CD,且,AB∥CD,P為一動點

當點P移動到AB,CD之間,如圖(1),這時∠P與∠A,∠C有怎樣的關(guān)系?

答案:
解析:

∠P=∠A+∠C,證明:延長AP交CD于點E,如答圖.因為AB∥CD,所以∠A=∠AEC.義因為∠APC是△PCE的外角,所以∠APC=∠C+∠AEC,所以∠APC=∠A+∠C


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知,如圖,在直角坐標系內(nèi),△ABC的頂點在坐標軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=
43
,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標平面內(nèi)是否存在點M,使以點O、M、P、C為頂點的四邊形是平精英家教網(wǎng)行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點.

(1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論.
(2)當點P移動到AB的外側(cè)時,如圖(2),是否仍有(1)的結(jié)論?如果不是
∠P=∠C-∠A
,請寫出你的猜想(不要求證明).
(3)當點P移動到如圖(3)的位置時,∠P與∠A、∠C又有怎樣的關(guān)系?能否利用(1)的結(jié)論來證明?還有其他的方法嗎?請寫出一種.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省廣州市越秀區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

已知,如圖,在直角坐標系內(nèi),△ABC的頂點在坐標軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標平面內(nèi)是否存在點M,使以點O、M、P、C為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省雞西市三校聯(lián)考中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知,如圖,在直角坐標系內(nèi),△ABC的頂點在坐標軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標平面內(nèi)是否存在點M,使以點O、M、P、C為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案