【題目】如圖,在△ABC中,AB=AC,BC=4,面積是16,AC的垂直平分線EF分別交AC,AB邊于點E、F,若點D為BC邊上的中點,點M為線段EF一動點,則△CDM周長的最小值為( )
A.4B.8C.10D.12
【答案】C
【解析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關(guān)于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.
解:連接AD,AM.
∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴,
解得:AD=8,
∵EF是線段AC的垂直平分線,
∴點C關(guān)于直線EF的對稱點為點A,
∴MA=MC,
∵AD≤AM+MD,
∴AD的長為CM+MD的最小值,
∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖.一次函數(shù)y=x+1的圖象L1交y軸于點A,一次函數(shù)y=﹣x+3的圖象L2交x軸于點B,L1與L2交于點C.
(1)求點A與點B的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖像與x軸交于點,與軸交于點.
(1)求直線的解析式;
(2)在坐標系中能否找到點,使得且?如果能,求出滿足條件的點的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當OB=3,PA=6時,求MB,MC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,AD是⊙O的切線交BC的延長線于D,AB交OC于E.
(1)求證:AD∥OC;
(2)若AE=2,CE=2.求⊙O的半徑和線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如圖②,如果AB=AC,,當點D在線段BC的延長線上時,猜想線段CF、BD的關(guān)系,并說明理由.
(2)如圖③,如果ABAC,是銳角,點D在線段BC上,當時,必有CFBC(點C,F不重合),請先在橫線上添加條件,再作證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩隊參加了“端午情,龍舟韻”賽龍舟比賽,兩隊在比賽時的路程(米)與時間(秒)之間的函數(shù)圖象如圖所示,請你根據(jù)圖象判斷,下列說法正確的是( )
A. 乙隊率先到達終點
B. 甲隊比乙隊多走了米
C. 在秒時,兩隊所走路程相等
D. 從出發(fā)到秒的時間段內(nèi),乙隊的速度慢
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com