【題目】如圖,等腰RtABC中,斜邊AB的長(zhǎng)為2,OAB的中點(diǎn),PAC邊上的動(dòng)點(diǎn),OQOPBC于點(diǎn)Q,MPQ的中點(diǎn),當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)M所經(jīng)過(guò)的路線長(zhǎng)為( 。

A. B. C. 1 D. 2

【答案】C

【解析】連接OC,作PEABE,MHABH,QFABF,如圖,利用等腰直角三角形的性質(zhì)得AC=BC=,A=B=45°,OCAB,OC=OA=OB=1,OCB=45°,再證明RtAOP≌△COQ得到AP=CQ,接著利用APEBFQ都為等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后證明MH為梯形PEFQ的中位線得到MH=,即可判定點(diǎn)MAB的距離為,從而得到點(diǎn)M的運(yùn)動(dòng)路線為ABC的中位線,最后利用三角形中位線性質(zhì)得到點(diǎn)M所經(jīng)過(guò)的路線長(zhǎng).

連接OC,作PEABE,MHABH,QFABF,如圖,

∵△ACB為到等腰直角三角形,

AC=BC=AB=,A=B=45°,

OAB的中點(diǎn),

OCAB,OC平分∠ACB,OC=OA=OB=1,

∴∠OCB=45°,

∵∠POQ=90°,COA=90°,

∴∠AOP=COQ,

RtAOPCOQ

,

RtAOP≌△COQ,

AP=CQ,

易得APEBFQ都為等腰直角三角形,

PE=AP=CQ,QF=BQ,

PE+QF=(CQ+BQ)=BC==1,

M點(diǎn)為PQ的中點(diǎn),

MH為梯形PEFQ的中位線,

MH=(PE+QF)=,

即點(diǎn)MAB的距離為

CO=1,

∴點(diǎn)M的運(yùn)動(dòng)路線為ABC的中位線,

∴當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)M所經(jīng)過(guò)的路線長(zhǎng)=AB=1,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列結(jié)論:①若,則互為相反數(shù);②若,則;③;④絕對(duì)值小于10的所有整數(shù)之和等于0;⑤3-5是同類項(xiàng).其中正確的結(jié)論有( )個(gè).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若兩個(gè)三角形,有兩邊相等且其中一組等邊所對(duì)的角對(duì)應(yīng)相等,但不是全等三角形,我們就稱這兩個(gè)三角形為偏差三角形.

1)如圖1,已知A3,2),B4,0),請(qǐng)?jiān)?/span>x軸上找一個(gè)C,使得△OAB△OAC是偏差三角形.你找到的C點(diǎn)的坐標(biāo)是______,直接寫出∠OBA和∠OCA的數(shù)量關(guān)系______

2)如圖2,在四邊形ABCD中,AC平分∠BAD,∠D+B=180°,問(wèn)△ABC△ACD是偏差三角形嗎?請(qǐng)說(shuō)明理由.

3)如圖3,在四邊形ABCD中,AB=DC,ACBD交于點(diǎn)P,BD+AC=9,∠BAC+BDC=180°,其中∠BDC90°,且點(diǎn)C到直線BD的距離是3,求△ABC△BCD的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC與△CDE均是等邊三角形,點(diǎn)B、C、E在同一條直線上,AEBD交于點(diǎn)O,AECD交于點(diǎn)G,ACBD交于點(diǎn)F,連接OC、FG,則下列結(jié)論:AE=BD;②AG=BF;③FGBE;④∠BOC=∠EOC.其中正確結(jié)論的個(gè)數(shù)為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠A=AGE,D=DGC.

(1)試說(shuō)明ABCD;

(2)若∠1+2=180°,且∠BEC=2B+60°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過(guò)菱形OACD的頂點(diǎn)D和邊AC的中點(diǎn)E,若菱形OACD的邊長(zhǎng)為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)踐活動(dòng)小組借助載有測(cè)角儀的無(wú)人機(jī)測(cè)量象山嵐光閣與文明湖湖心亭之間的距離.如圖,無(wú)人機(jī)所在位置P與嵐光閣閣頂A、湖心亭B在同一鉛垂面內(nèi),PB的垂直距離為300米,AB的垂直距離為150米,在P處測(cè)得A、B兩點(diǎn)的俯角分別為α、β,且tanα=,tanβ=﹣1,試求嵐光閣與湖心亭之間的距離AB.(計(jì)算結(jié)果若含有根號(hào),請(qǐng)保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上海世博會(huì)中國(guó)國(guó)家館模型的平面圖如圖所示,其外框是一個(gè)大正方形,中間四個(gè)大小相同的小正方形(陰影部分)是支撐展館的核心筒,標(biāo)記了字母的五個(gè)大小相同的正方形是展廳,剩余的四個(gè)大小相同的休息廳,已知核心筒的正方形邊長(zhǎng)比展廳的正方形邊長(zhǎng)的一半多1米.

1)設(shè)展廳的正方形邊長(zhǎng)為米,用含的代數(shù)式表示核心簡(jiǎn)的正方形邊長(zhǎng)為 米;

2)設(shè)核心筒的正方形邊長(zhǎng)為米,求該模型的平面圖外框大正方形的周長(zhǎng)和每個(gè)休息廳的周長(zhǎng).(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角(),當(dāng)點(diǎn)2019次碰到矩形的邊時(shí),點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案