精英家教網 > 初中數學 > 題目詳情

【小題1】如圖1是兩個有一邊重合的正三角形,那么由其中一個正三角形繞平面內某一點旋轉后能與另一個正三角形重合,平面內可以作為旋轉中心的點有_               個.
【小題2】如圖2是兩個有一邊重合的正方形,那么由其中一個正方形繞平面內某一點旋轉后能與另一個正方形重合,平面內可以作為旋轉中心的點有_               個.
【小題3】如圖3是兩個有一邊重合的正五邊形,那么由其中一個正五邊形繞平面內某一點旋轉后能與另一個正五邊形重合,平面內可以作為旋轉中心的點有_               個.
【小題4】如圖4是兩個有一邊重合的正六邊形,那么由其中一個正六邊形繞平面內某一點旋轉后能與另一個正六邊形重合,平面內可以作為旋轉中心的點有_               個.
【小題5】拓展探究:兩個有一邊重合的正n(n≥3)邊形,那么由其中一個正n邊形繞平面內某一點旋轉后能與另一個正n邊形重合,平面內可以作為旋轉中心的點有多少個?(直接寫結論)

圖1

 
圖2
 
                  

圖3

 
圖4
 
                

 

【小題1】見解析
【小題1】見解析
【小題1】見解析
【小題1】見解析
【小題1】見解析解析:
本題考查旋轉的相關概念和性質
【小題1】3
【小題1】3
【小題1】5
【小題1】5
【小題1】n為奇數時,有n個,n 為偶數時,有n-1個
練習冊系列答案
相關習題

科目:初中數學 來源:2011~2012學年江蘇蘇州八年級下期期末復習(一)數學試卷(帶解析) 題型:解答題

如圖①,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.
【小題1】研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點,如圖②所示,則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
【小題2】請你說明:三角形的中線是否也是該三角形的黃金分割線?
【小題3】研究小組在進一步探究中發(fā)現:過點C任意作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請你說明理由.
【小題4】如圖④,點E是□ABCD的邊AB上的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是□ABCD的黃金分割線,請你畫一條□ABCD的黃金分割線,使它不經過□ABCD各邊黃金分割點.

查看答案和解析>>

科目:初中數學 來源:2012年人教新課標版中考綜合模擬數學卷(13) 題型:解答題

如圖22-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉.
【小題1】如圖22-2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,FN的長度,猜想BM,FN滿足的數量關系,并證明你的猜想;
【小題2】若三角尺GEF旋轉到如圖22-3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省無錫市惠山區(qū)九年級5月模擬考試數學試卷(帶解析) 題型:解答題


【小題1】如圖1是兩個有一邊重合的正三角形,那么由其中一個正三角形繞平面內某一點旋轉后能與另一個正三角形重合,平面內可以作為旋轉中心的點有_               個.
【小題2】如圖2是兩個有一邊重合的正方形,那么由其中一個正方形繞平面內某一點旋轉后能與另一個正方形重合,平面內可以作為旋轉中心的點有_               個.
【小題3】如圖3是兩個有一邊重合的正五邊形,那么由其中一個正五邊形繞平面內某一點旋轉后能與另一個正五邊形重合,平面內可以作為旋轉中心的點有_               個.
【小題4】如圖4是兩個有一邊重合的正六邊形,那么由其中一個正六邊形繞平面內某一點旋轉后能與另一個正六邊形重合,平面內可以作為旋轉中心的點有_               個.
【小題5】拓展探究:兩個有一邊重合的正n(n≥3)邊形,那么由其中一個正n邊形繞平面內某一點旋轉后能與另一個正n邊形重合,平面內可以作為旋轉中心的點有多少個?(直接寫結論)

圖1

 
圖2
 
                  

圖3

 
圖4
 
                

 

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省南京市溧水縣中考一模數學試卷(帶解析) 題型:解答題

七年級我們曾學過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關問題,下面是大家非常熟悉的一道習題:
如圖1,已知,A,B在直線l的同一側,在l上求作一點,使得PA+PB最。

圖2

 
圖1
 

我們只要作點B關于l的對稱點B′,(如圖2所示)根據對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
【小題1】如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結EP,CP,則EP+CP的最小值是________;

運用:
【小題2】如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應該是        ;
操作:
【小題3】如圖5,A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)
                 

查看答案和解析>>

同步練習冊答案