【題目】節(jié)假日期間向、某商場(chǎng)組織游戲,主持人請(qǐng)三位家長(zhǎng)分別帶自己的孩于參加游戲,A、B、C分別表示一位家長(zhǎng),他們的孩子分別對(duì)應(yīng)的是a,b,若主持人分別從三位家長(zhǎng)和三位孩予中各選一人參加游戲.
若已選中家長(zhǎng)A,則恰好選中自己孩子的概率是______.
請(qǐng)用畫(huà)樹(shù)狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(3,2)、B(2,0),將這三個(gè)頂點(diǎn)的坐標(biāo)同時(shí)擴(kuò)大到原來(lái)的2倍,得到對(duì)應(yīng)點(diǎn)D、E、F.
(1)在圖中畫(huà)出△DEF;
(2)點(diǎn)E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,以AC為邊在△ABC外作等邊△ACD,BC=,AD=,tan∠ACB=,則線段BD的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為 1 的網(wǎng)格中,點(diǎn) A、B、C 均在格點(diǎn)上,BC 與網(wǎng)格交于點(diǎn) P,(1)△ABC 的面積等于______;(2)在 AC 邊上有一點(diǎn) Q,當(dāng) PQ 平分△ABC 的面積時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出 PQ,并簡(jiǎn)要說(shuō)明點(diǎn) Q 的位置是如何找到的(不要求證明)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共4個(gè),某學(xué)習(xí)小組進(jìn)行摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再放回,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 33 | 60 | 130 | 202 | 251 |
摸到黑球的頻率 |
當(dāng)n很大時(shí),估計(jì)從袋中摸出一個(gè)黑球的概率是______;
試估算口袋中白球有______個(gè);
在的條件下,若從中先換出一球,不放回,搖勻后再摸出一球,請(qǐng)用列表或樹(shù)狀圖的方法求兩次都摸到白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一租賃公司擁有某種型號(hào)的汽車10輛,公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛汽車每天的租賃價(jià)為120元時(shí)可全部出租,租賃價(jià)每漲3元就少出租1輛,公司決定采取漲價(jià)措施.
填空:每天租出的汽車數(shù)輛與每輛汽車的租賃價(jià)元之間的關(guān)系式為______.
已知租出的汽車每輛每天需要維護(hù)費(fèi)30元,求租出汽車每天的實(shí)際收入元與每輛汽車的租賃價(jià)元之間的關(guān)系式;租出汽車每天的實(shí)際收入租出收入租出汽車維護(hù)費(fèi)
若未租出的汽車每輛每天需要維護(hù)費(fèi)12元,則每輛汽車每天的租賃價(jià)元定為多少元時(shí),才能使公司獲得日收益元最大?并求出公司的最大日收益.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M是邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)N在CD邊的延長(zhǎng)線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點(diǎn)E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明與同學(xué)們?cè)跀?shù)學(xué)動(dòng)手實(shí)踐操作活動(dòng)中,將銳角為的直角三角板MPN的一個(gè)銳角頂點(diǎn)P與正方形ABCD的頂點(diǎn)A重合,正方形ABCD固定不動(dòng),然后將三角板繞著點(diǎn)A旋轉(zhuǎn),的兩邊分別與正方形的邊BC、DC或其延長(zhǎng)線相交于點(diǎn)E、F,連結(jié)EF.
(探究發(fā)現(xiàn))
在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的兩邊分別與正方形的邊CB、DC相交時(shí),如圖所示,請(qǐng)直接寫(xiě)出線段BE、DF、EF滿足的數(shù)量關(guān)系:______.
(拓展思考)
在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的兩邊分別與正方形的邊CB、DC的延長(zhǎng)線相交時(shí),如圖所示,則線段BE、DF、EF又將滿足怎樣的數(shù)量關(guān)系:______,并證明你的結(jié)論;
(創(chuàng)新應(yīng)用)
若正方形的邊長(zhǎng)為4,在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的一邊恰好經(jīng)過(guò)BC邊的中點(diǎn)時(shí),試求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探索發(fā)現(xiàn))
如圖1,是一張直角三角形紙片,,小明想從中剪出一個(gè)以為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為______.
(拓展應(yīng)用)
如圖2,在中,,BC邊上的高,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,求出矩形PQMN面積的最大值用含a、h的代數(shù)式表示;
(靈活應(yīng)用)
如圖3,有一塊“缺角矩形”ABCDE,,,,,小明從中剪出了一個(gè)面積最大的矩形為所剪出矩形的內(nèi)角,直接寫(xiě)出該矩形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com