為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,空氣中藥物濃度逐漸降低,y與x成反比例,如圖a所示.根據(jù)圖中提供的信息,解答下列問題:

(1)求出從藥物釋放開始和完畢后的y與x之間的兩個函數(shù)函數(shù)解析式.

(2)據(jù)測定,當空氣中每立方米的含藥量降低到405毫克以下時,學(xué)生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?

(3)藥物說明書上寫到,當藥物濃度不低于每立方米6毫克并且持續(xù)時間不得低于10分鐘時消毒猜算有效,問這次消毒是否有效?

答案:
解析:

  (1)解:正比例函數(shù)是y=kx

  反比例函數(shù)是y=

  把點(12,9)分別代入

  K= m=108

  所以兩個函數(shù)解析式分別是y=x y=

  (2)當y=4.5時

  =4.5

  X=24

  答:至少需要24分鐘才能進入教室

  (3)當y=6時

  x=6 x=8

   x=18

  18-8=10>9

  所以這次消毒有效


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.45毫克以下時,學(xué)生方可進入精英家教網(wǎng)教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=
at
(a為常數(shù)),如圖所示.據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與t之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量的取值范圍;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進入精英家教網(wǎng)教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防“流感”,某學(xué)校對教室采用“藥熏”消毒法進行消毒.已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒完后,y與x成反比例(如圖所示).現(xiàn)測得藥物4分鐘精英家教網(wǎng)燃畢,此時室內(nèi)空氣中每立方米含藥量為8毫克.請根據(jù)題中所提供的信息,解答下列問題:
(1)求藥物燃燒時,y關(guān)于x的函數(shù)解析式及定義域;
(2)求藥物燃燒完后,y關(guān)于x的函數(shù)解析式及定義域;
(3)研究表明,當空氣中每立方米的含藥量不低于2毫克時,才能有效地殺滅空氣中的病菌,那么此次消毒有效時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=
at
(a為常數(shù)),如圖所示.據(jù)圖中提供的信息,解答下列問題:
(1)求a的值;
(2)寫出從藥物釋放過程中,y與t之間的函數(shù)關(guān)系式及相應(yīng)的自變量的取值范圍;
(3)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?(藥物釋放過程中,學(xué)生一律不能進教室)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防流感,某學(xué)校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=
at
(a為常數(shù)),如圖所示.據(jù)圖中提供的信息,解答下列問題:
y(毫克)O3t(小時)1P
(1)寫出從藥物釋放開始,y與t之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?
(3)當空氣中每立方米空氣中的含藥量y達到0.6毫克消毒才有效,問消毒的有效時間為多少?

查看答案和解析>>

同步練習(xí)冊答案