一個(gè)等腰三角形的兩條邊長分別是方程的兩根,則該等腰三角形的周長是( )
A. 12 B. 9 C. 13 D. 12或9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:山東省濟(jì)南市歷下區(qū)2018-2019學(xué)年八年級(jí)上學(xué)期期中質(zhì)量數(shù)學(xué)試卷 題型:解答題
如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點(diǎn)A、B,再將△A0B沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合.折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)求OC的長度,并求出此時(shí)直線BC的表達(dá)式;
(3)直線BC上是否存在一點(diǎn)M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:河南省南陽市鎮(zhèn)平縣2019屆九年級(jí)(上)期中數(shù)學(xué)試卷 題型:單選題
如圖,以點(diǎn)O為位似中心,將△ABC放大得到△DEF,若AD=OA,則△ABC與△DEF 的面積之比為 ( )
A. 1:2 B. 1:4 C. 1:5 D. 1:6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:遼寧省營口市大石橋市水源鎮(zhèn)2019屆九年級(jí)(上)期中數(shù)學(xué)試卷 題型:填空題
在半徑為 9cm 的圓中,60°的圓心角所對的弦長為___________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:遼寧省營口市大石橋市水源鎮(zhèn)2019屆九年級(jí)(上)期中數(shù)學(xué)試卷 題型:單選題
如圖,⊙O過點(diǎn)B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( 。
A. 6 B. 13 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:福建省泉州市晉江市安海片區(qū)2019屆九年級(jí)(上)期中數(shù)學(xué)試卷 題型:解答題
如圖,直線與x軸、y軸分別交于點(diǎn)A、B,動(dòng)點(diǎn)Q在線段AB上以每秒1個(gè)單位長度的速度從點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)Q作AB的垂線交x軸于點(diǎn)P,設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
求證;
是否存在t值,為等腰三角形?若存在,求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:浙教版數(shù)學(xué)八年級(jí)上冊 第1章《三角形的初步知識(shí)》測試卷 題型:解答題
在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(1)的位置時(shí),顯然有:DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),求證:DE=AD﹣BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個(gè)等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:上海市松江區(qū)2018-2019學(xué)年七年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷 題型:填空題
計(jì)算:(a-2b)2 =_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com