【題目】如圖,拋物線的頂點為A(-3,-3),此拋物線交x軸于O、 B兩點.
(1)求此拋物線的解析式.
(2)求△AOB的面積 .
(3)若拋物線上另有點P滿足S△POB=S△AOB,請求出P坐標(biāo).
【答案】⑴拋物線解析式為:y=,或y=;⑵9;⑶P(-3+3,3)或(-3-3,3).
【解析】試題分析:(1)設(shè)拋物線的解析式為y=a(x+3)23,然后把原點坐標(biāo)代入求出a即可;
(2)根據(jù)拋物線的對稱性確定B點坐標(biāo),然后根據(jù)三角形的面積公式求解;
(3)設(shè)P點坐標(biāo)為(x,y),根據(jù)S△POB=S△AOB可計算出y,然后利用二次函數(shù)的解析式計算對應(yīng)的x的值,從而得到P點坐標(biāo).
試題解析:
(1)如圖,連接AB、OA.設(shè)拋物線的解析式為y=a(x+3)3,
把(0,0)代入得a×3 3=0,解得a=,
所以此拋物線的解析式為y=(x+3)3;
(2)∵拋物線的對稱軸為直線x=3,
∴B點坐標(biāo)為(6,0),
∴△AOB的面積=×6×3=9;
(3)設(shè)P點坐標(biāo)為(x,y),
∵S△POB=S△AOB,
∴|y|×6=9,
解得y=3或y=3(舍去),
∴(x+3)3=3,
解得x=33,x=33,
∴P點坐標(biāo)為(33,3),(33,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).
小海同學(xué)的解法如下:
解:原式=﹣ ①
=(x﹣1)2﹣x2+3 ②
=x2﹣2x﹣1﹣x2+3 ③
=﹣2x+2.④
當(dāng)x=﹣1時,⑤
原式=﹣2×(﹣1)+2⑥
=2+2=4.⑦
請指出他解答過程中的錯誤(寫出相應(yīng)的序號,多寫不給分),并寫出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點C的對應(yīng)點E落在AB邊上,若AD=2,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一座拋物線形拱橋,正常水位橋下面寬度為米,拱頂距離水平面米,如圖建立直角坐標(biāo)系,若正常水位時,橋下水深米,為保證過往船只順利航行,橋下水面寬度不得小于米,則當(dāng)水深超過多少米時,就會影響過往船只的順利航行( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).
(1)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,并直接寫出B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、C分別是一次函數(shù)y=﹣x+3的圖象與y軸、x軸的交點,點B與點C關(guān)于原點對稱,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點B,且該二次函數(shù)圖象上存在一點D,使四邊形ABCD能構(gòu)成平行四邊形.
(1)求二次函數(shù)的表達式;
(2)動點P從點A到點D,同時動點Q從點C到點A都以每秒1個單位的速度運動,設(shè)運動時間為t秒.
①當(dāng)t為何值時,有PQ丄AC?
②當(dāng)t為何值時,四邊形PDCQ的面積最?此時四邊形PDCQ的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的漢字書寫能力,某學(xué)校連續(xù)舉辦了幾屆漢字聽寫大賽,今年經(jīng)過層層選拔,確定了參加決賽的選手,決賽的比賽規(guī)則是每正確聽寫出1個漢字得2分,滿分是100分,下面是根據(jù)決賽的成績繪制出的不完整的頻數(shù)分布表、扇形統(tǒng)計圖和頻數(shù)分布直方圖.
請結(jié)合圖表完成下列各題
(1)表中a的值為______,并把頻數(shù)分布直方圖補充完整;
(2)學(xué)校想利用頻數(shù)分布表估計這次決賽的平均成績,請你直接寫出平均成績;
(3)通過與去年的決賽成績進行比較,發(fā)現(xiàn)今年各類人數(shù)的中位數(shù)有了顯著提高,提高了15%以上,求去年各類人數(shù)的中位數(shù)最高可能是多少?
(4)想從A類學(xué)生的3名女生和2名男生中選出兩人進行培訓(xùn),直接寫出選中1名男生和1名女生的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點F在ABCD的對角線AC上,過點F、B分別作AB、AC的平行線相交于點E,連接BF,∠ABF=∠FBC+∠FCB.
(1)求證:四邊形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE=,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com