精英家教網(wǎng)如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作DE⊥BC,垂足為E,連接OE,CD=
3
,∠ACB=30°.
(1)求證:DE是⊙O的切線;
(2)分別求AB,OE的長.
分析:(1)根據(jù)AB是直徑即可求得∠ADB,再根據(jù)題意可求出OD⊥DE,即得出結論;
(2)根據(jù)三角函數(shù)的定義,即可求得AB,再在Rt△CDE中,根據(jù)直角三角形的性質,可求得DE,再由勾股定理求出OE即可.
解答:(1)證明:連接BD,OD,
∵AB是直徑,
∴∠ADB=90°
又∵AB=BC,
∴AD=CD,
∴OD∥BC
∴OD⊥DE,
∴DE是⊙O的切線.(4分)
精英家教網(wǎng)
(2)解:在Rt△CBD中CD=
3
,∠ACB=30°,
∴BC=
CD
cos30°
=
3
3
2
=2,
∴AB=2.
在Rt△CDE中,CD=
3
,∠ACB=30°,
∴DE=
1
2
CD=
1
2
×
3
=
3
2

在Rt△ODE中,OE=
OD2+DE2
=
7
2
點評:本題考查了切線的判定和性質、勾股定理、圓周角定理以及解直角三角形,是一道綜合題,難度不大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案