(2006•防城港)計算:
【答案】分析:本題涉及零指數(shù)冪、二次根式化簡兩個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
解答:解:原式=
=8.
點評:本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.
解決此類題目的關(guān)鍵是零指數(shù)冪、二次根式等考點的運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西玉林市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設(shè)OA•OB=3(O為坐標(biāo)系原點).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西防城港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標(biāo)原點,AB所在的直線為x軸,建立直角坐標(biāo)系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設(shè)直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設(shè)P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案