【題目】△ABC中,AB=AC,點D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,求證:DECD=DFBE
(2)D為BC中點如圖2,連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.

【答案】
(1)證明:∵△ABC中,AB=AC,

∴∠B=∠C.

∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,

∴∠FDC=∠DEB,

∴△BDE∽△CFD,

,

即DECD=DFBE


(2)解:①由(1)證得△BDE∽△CFD,

,

∵D為BC中點,

∴BD=CD,

= ,

∵∠B=∠EDF,

∴△BDE~△DFE,

∴∠BED=∠DEF,

∴ED平分∠BEF;

②∵四邊形AEDF為菱形,

∴∠AEF=∠DEF,

∵∠BED=∠DEF,

∴∠AEF=60°,

∵AE=AF,

∴∠BAC=60°,

∵∠BAC=60°,

∴△ABC是等邊三角形,

∴∠B=60°,

∴△BED是等邊三角形,

∴BE=DE,

∵AE=DE,

∴AE= AB,

=


【解析】(1)先根據(jù)題意得出△BDE∽△CFD,再由相似三角形的性質(zhì)即可得出結(jié)論;(2)①根據(jù)相似三角形的性質(zhì)得到 ,推出△BDE∽△DEF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;②由四邊形AEDF為菱形,得到∠AEF=∠DEF,于是得到∠AEF=60°,推出△ABC是等邊三角形,△BED是等邊三角形,得到BE=DE,即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC90°,ADCDDPABP.若四邊形ABCD的面積是18,則DP的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個數(shù)能否被99整除是從這個數(shù)的末位開始,兩位一段,看看這些數(shù)段的和能否被99整除.像這樣能夠被99整除的數(shù),我們稱之為“長久數(shù)”.例如542718,因為18+27+54=99,所以542718能夠被99整除;又例如25146,因為46+51+2=99,所以25146能夠被99整除.
(1)若 這個三位數(shù)是“長久數(shù)”,求a的值;
(2)在(1)中的三位數(shù)的首位和個位與十位之間加上和為9的兩個數(shù)字,讓其成為一個五位數(shù),該五位數(shù)仍是“長久數(shù)”,求這個五位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小強進行百米賽跑,小明比小強跑得快,如果兩人同時起跑,小明肯定贏,如圖所示,現(xiàn)在小明讓小強先跑_______米,直線__________表示小明的路程與時間的關(guān)系,大約_______秒時,小明追上了小強,小強在這次賽跑中的速度是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校辦工廠現(xiàn)在年產(chǎn)值是15萬元,計劃以后每年增加2萬元.

1)寫出年產(chǎn)值(萬元)與年數(shù)之間的關(guān)系式.

2)用表格表示當(dāng)0變化到6(每次增加1的對應(yīng)值.

3)求5年后的年產(chǎn)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.4的平方根是2
B.點(﹣3,﹣2)關(guān)于x軸的對稱點是(﹣3,2)
C. 是無理數(shù)
D.無理數(shù)就是無限小數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解分式方程: 1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店用1050元購進第一批某種鋼筆,很快賣完,又用1440元購進第二批該種鋼筆,但第二批每支鋼筆的進價是第一批進價的1.2倍,數(shù)量比第一批多了10支。

(1)求第一批每支鋼筆的進價是多少元?

(2)第二批鋼筆按24元/支的價格銷售,銷售一定數(shù)量后,根據(jù)市場情況,商店決定對剩余的鋼筆全按8折一次性打折銷售,但要求第二批鋼筆的利潤率不低于20%,問至少銷售多少支后開始打折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點,,點在第三象限,已知,且

1)求點的坐標(biāo);

1

2)如圖2,為線段上一動點(端點除外),軸負(fù)半軸的一點,連接、,射線的角平分線交于,若,求點的坐標(biāo);

2

3)在第(2)問的基礎(chǔ)上,如圖3,點與點關(guān)于軸對稱,是射線上一個動點,連接,平分,平分,射線.試問的度數(shù)是否發(fā)生改變?若不變,請求其度數(shù):若改變,請指出其變化范圍.

3

查看答案和解析>>

同步練習(xí)冊答案