【題目】如圖,在平行四邊形ABCD中,以點A為圓心,一定長為半徑作圓弧,分別交AD、AB于點E、F;再分別以點E、F為圓心,大于 EF的長為半徑作弧,兩弧交于點G;作射線AG,交邊CD于點H.若AB=6,AD=4,則四邊形ABCH的周長與三角形ADH的周長之差為(
A.4
B.5
C.6
D.7

【答案】A
【解析】解:根據(jù)作圖的方法可得AG平分∠DAB,

∵AG平分∠DAB,

∴∠DAH=∠BAH,

∵CD∥AB,

∴∠DHA=∠BAH,

∴∠DAH=∠DHA,

∴AD=DH,

∵AB=CD=6,AD=BC=4,

∴CH=6﹣4=2,

∴四邊形ABCH的周長與三角形ADH的周長之差=(AB+BC+CH+AH)﹣(AD+AH+DH)=AB+CH﹣DH=6+2﹣4=4,

故選A.

【考點精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上,以及對平行四邊形的性質(zhì)的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣14+3tan30°﹣ +(2017+π)0+( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(m2xm1=0有兩個相等的實數(shù)根,則m

值是

A. 0 B. 8 C. 4±2 D. 08

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A,B,與y軸交于點C,其中點A在y軸的左側(cè),點C在x軸的下方,且OA=OC=5.

(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)點P為拋物線對稱軸上的一動點,當(dāng)PB+PC的值最小時,求點P的坐標;
(3)在(2)條件下,點E為拋物線的對稱軸上的動點,點F為拋物線上的動點,以點P、E、F為頂點作四邊形PEFM,當(dāng)四邊形PEFM為正方形時,請直接寫出坐標為整數(shù)的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點A、B在數(shù)軸上分別表示實數(shù)、,A、B兩點之間的距離記作AB.

當(dāng)A、B兩點中有一點為原點時,不妨設(shè)A點在原點.如圖①所示,則AB=OB=

 當(dāng)A、B兩點都不在原點時:

(1)如圖②所示,點A、B都在原點的右邊,不妨設(shè)點A在點B的左側(cè),則AB=OB-OA=

(2)如圖③所示,點A、B都在原點的左邊,不妨設(shè)點A在點B的右側(cè),則AB=OB-OA=

(3)如圖④所示,點A、B分別在原點的兩邊,不妨設(shè)點A在點O的右側(cè),則AB=OB+OA=

回答下列問題:

(1)綜上所述,數(shù)軸上A、B兩點之間的距離AB= 

(2)數(shù)軸上表示2和-4的兩點A和B之間的距離AB=    

(3)數(shù)軸上表示和-2的兩點A和B之間的距離AB=     ,如果AB=2,則的值為    

(4)若代數(shù)式有最小值,則最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)為倡導(dǎo)節(jié)約用電,某地決定對居民家庭用電實行“階梯電價”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時以下(含80千瓦時,1千瓦時俗稱1度)時,實行“基本電價”;當(dāng)居民家庭月用電量超過80千瓦時時,超過部分實行“提高電價”.

(1)(4分)小張家2015年2月份用電100千瓦時,上繳電費68元;3月份用電120千瓦時,上繳電費88元.問“基本電價”和“提高電價”分別為多少元/千瓦時?

(2)(3分)若4月份小張家預(yù)計用電130千瓦時,請預(yù)算小張家4月份應(yīng)上繳的電費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2 ,AD=4,點E是BC邊上一個動點,連接AE,作DF⊥AE于點F,當(dāng)BE的長為時,△CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自4月以來,我市推出了一項“共享單車”的便民舉措,為人們的城市生活出行帶來了方便.圖(1)所示的是某款單車的實物圖.圖(2)是這輛單車的部分幾何示意圖,其中車支架BC的長為20cm,且∠CBA=75°,∠CAB=30°.求車架檔AB的長.(參考數(shù)據(jù):sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次成語知識競賽,滿分10分,學(xué)生得分均為整數(shù),成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀. 為了解本次大賽的成績,校團委隨機抽取了甲、乙兩組學(xué)生成績作為樣本進行統(tǒng)計,繪制了如下統(tǒng)計圖表:

組別

平均數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%

1)求出表中ab的值;

2)小英同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面的表格判斷,小英屬于哪個組?

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組. 但乙組同學(xué)不同意甲組同學(xué)的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學(xué)觀點的理由.

查看答案和解析>>

同步練習(xí)冊答案