【題目】小明和小紅學習了用圖形面積研究整式乘法的方法后,分別進行了如下數(shù)學探究:把一根鐵絲截成兩段,

探究1:小明截成了兩根長度不同的鐵絲,并用兩根不同長度的鐵絲分別圍成兩個正方形,已知兩正方形的邊長和為20cm,它們的面積的差為40cm2,則這兩個正方形的邊長差為________;

探究2:小紅截成了兩根長度相同的鐵絲,并用兩根同樣長的鐵絲分別圍成一個長方形與一個正方形,若長方形的長為xcm,寬為ycm.

(1)用含x,y的代數(shù)式表示正方形的邊長為________;

(2)設長方形的長大于寬,比較正方形與長方形面積哪個大,并說明理由.

【答案】探究12cm; 探究2 (1) ,(2) 正方形的面積大于長方形的面積,理由見解析

【解析】試題分析:探究一:根據(jù)平方差公式進行解答;

探究二:(1)根據(jù)正方形周長與邊長的關系,即可解答;

(2)作差進行比較,即可解答.

試題解析:探究1設兩個正方形的邊長分別為a,b,則a+b=20,

a2-b2=40

a+b)(a-b=40,

20a-b=40,

a-b=2cm),

故答案為:2cm;

探究2

1=,

故答案為: cm;

2)正方形的面積較大,理由如下:

正方形的面積為(2cm2,長方形的面積為xycm2

2xy,

x>y >0,∴( 2>xy,

∴正方形的面積大于長方形的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形中, , ,點從點開始以的速度沿邊向點運動,點從點的速度沿邊向點運動,如果、同時出發(fā),設運動時間為

)當時,求的長.

)當點運動到點時, 、同時停止運動.在運動過程中,是否存在的值,使得、、的面積都相等,若存在,求出的值;若不存在,請說明理由.

)當運動時, 點停止運動, 點以原速立即向點返回,在返回的過程中, 是否能平分?若能,求出點運動的時間;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,過點AAEBC,垂足為E,連接DEF為線段DE上一點,AFE=∠B

(1)求證ADF∽△DEC;

(2)若AB=8,AD=,AF=AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖正比例函數(shù)y=k1x與反比例函數(shù)交于點A,從Ax軸、y軸分別作垂線,所構成的正方形的面積為4.

1)分別求出正比例函數(shù)與反比例函數(shù)的解析式;

2)求出正、反比例函數(shù)圖象的另外一個交點坐標。

3)求ODC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,點D,E分別在邊BC,AB上,且BD=AE,ADCE交于點F

1)求證:AD=CE;

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC于點D,BE平分ABC,若ABC=64°,AEB=70°

(1)求CAD的度數(shù);

(2)若點F為線段BC上的任意一點,當EFC為直角三角形時,求BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:

(1)仔細觀察,在圖2中有 個以線段AC為邊的“8字形”;

(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù).

(3)在圖2中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關系(用α、β表示∠P),并說明理由;

(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A一個游戲的中獎概率是,則做10次這樣的游戲一定會中獎

B為了解全國中學生的心理健康情況,應該采用普查的方式

C一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8

D若甲組數(shù)據(jù)的方差S2=001,乙組數(shù)據(jù)的方差S2=01,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

同步練習冊答案