如圖28­15,在直角梯形紙片ABCD中,ADBC,∠A=90°,∠C=30°.折疊紙片使BC經(jīng)過點D.點C落在點E處,BF是折痕,且BFCF=8.

(1)求∠BDF的度數(shù);

(2)求AB的長.


解:(1)∵BFCF,∠C=30°,∴∠FBC=30°.

又由折疊性質(zhì)知:∠DBF=∠FBC=30°.

∴∠BDF=∠BDC=180°-∠DBC-∠C

=180°-2×30°-30°=90°.

(2)在Rt△BDF中,∵∠DBF=30°,BF=8,∴BD=4 .

ADBC,∠A=90°,∴∠ABC=90°.

又∵∠FBC=∠DBF=30°,∴∠ABD=30°.

在Rt△BDA中,∵∠ABD=30°,BD=4 ,∴AB=6.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


國家發(fā)改委公布的《商品房銷售明碼標價規(guī)定》,從2011年5月1日起商品房銷售實行一套一標價.商品房銷售價格明碼標價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房者持幣觀望.為了加快資金周轉,房地產(chǎn)開發(fā)商對價格兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.

(1)求平均每次下調(diào)的百分率;

(2)某人準備以開盤均價購買一套100平方米的房子,開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:

①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元.

請問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖28­2­11,小穎利用有一個銳角是30°的三角板測量一棵樹的高度,已知她與樹之間的水平距離BE為5 m,AB為1.5 m(即小穎的眼睛距地面的距離),那么這棵樹高是(  )

圖28­2­11

A.m        

B.m          

 C. m       

D.4 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在Rt△ABC中,∠C=90°,a=5 b=5 ,則∠A=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖28­10,在魚塘兩側有兩棵樹A,B,小華要測量此兩樹之間的距離,他在距A樹30 m的C處測得∠ACB=30°,又在B處測得∠ABC=120°.求AB兩樹之間的距離(結果精確到0.1 m,參考數(shù)據(jù):≈1.414,≈1.732).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


小亮在上午8時、9時30分、10時、12時四次到室外的陽光下觀察向日葵的頭莖隨太陽轉動的情況,無意之中,他發(fā)現(xiàn)這四個時刻向日葵影子的長度各不相同,那么影子最長的時刻為(  )

A.上午12時  B.上午10時

C.上午9時30分  D.上午8時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖29­2­14所示的幾何體的主視圖是(  )

               

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


圖29­3­13是一個立體圖形的三視圖,請寫出這個立體圖形的名稱,并計算這個立體圖形的體積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖24­1­30,已知AB是⊙O的直徑,AC是弦,過點OODAC于點D,連接BC.

(1)求證:ODBC;

(2)若∠BAC=40°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習冊答案