【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個(gè)數(shù)分別填寫(xiě)在五角星中每?jī)蓷l線的交點(diǎn)處(每個(gè)交點(diǎn)處只填寫(xiě)一個(gè)數(shù)),將每一條線上的4個(gè)數(shù)相加,共得5個(gè)數(shù),設(shè)為a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交換其中任何兩位數(shù)的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說(shuō)明理由.

【答案】(1)25(2)等于

【解析】

(1)分別算出每一行上的四個(gè)數(shù)的和,即可得到結(jié)果.
(2)由①得,無(wú)論位置如何變換,這10個(gè)數(shù)都要用兩遍,那么和不會(huì)變化.

解:(1)a1+a2+a3+a4+a5.

=2×(-1-2+0+1+2+3+4+5+6+7).

=50.

(2)交換其中任何兩數(shù)的位置后,a1+a2+a3+a4+a5的值不變,仍為50.

理由:無(wú)論怎樣改變位置,其中的每個(gè)數(shù)都用了兩次,即a1+a2+a3+a4+a5.

=2×(-1-2+0+1+2+3+4+5+6+7).

=2×25.

=50.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在∠AOB的內(nèi)部作射線OC,使∠AOC與∠AOB互補(bǔ).將射線OA,OC同時(shí)繞點(diǎn)O分別以每秒12°,每秒的速度按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)后的射線OAOC分別記為OM,ON,設(shè)旋轉(zhuǎn)時(shí)間為t秒.已知t<30,AOB=114°.

(1)求∠AOC的度數(shù);

(2)在旋轉(zhuǎn)的過(guò)程中,當(dāng)射線OMON重合時(shí),求t的值;

(3)在旋轉(zhuǎn)的過(guò)程中,當(dāng)∠COM與∠BON互余時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….

若字母 表示自然數(shù),請(qǐng)把你觀察到的規(guī)律用含有 的式子表示出來(lái)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中卷第九勾股,主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開(kāi)門(mén),出東門(mén)一十五里有木,問(wèn):出南門(mén)幾何步而見(jiàn)木?”
譯文:“今有一座長(zhǎng)方形小城,東西向城墻長(zhǎng)7里,南北向城墻長(zhǎng)9里,各城墻正中均開(kāi)一城門(mén).走出東門(mén)15里處有棵大樹(shù),問(wèn)走出南門(mén)多少步恰好能望見(jiàn)這棵樹(shù)?”(注:1里=300步)
你的計(jì)算結(jié)果是:出南門(mén) 步而見(jiàn)木.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角三角形中,點(diǎn)為它們的直角頂點(diǎn),當(dāng)有重疊部分時(shí):

(1)①連接,如圖1,求證:

②連接,如圖2,求證: ;

(2)當(dāng)無(wú)重疊部分時(shí):連接,如圖3,當(dāng), 時(shí),計(jì)算四邊形面積的最大值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析表達(dá)式為:y=﹣3x+3,且l1x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A,B,直線l1l2交于點(diǎn)C根據(jù)圖中信息

1)求直線l2的解析表達(dá)式;

2)求ADC的面積;

3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得ADPADC的面積相等,求出點(diǎn)P的坐標(biāo);

4)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、D、C、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y=+x的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=+x的自變量x的取值范圍是;
(2)下表是y與x的幾組對(duì)應(yīng)值.

求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的其它性質(zhì)(一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)、菱形的邊長(zhǎng)1,面積為,則的值為( )

A、 B、 C、 D、

(2)、如圖,ABCD是正方形,ECF上一點(diǎn),若DBEF是菱形,則EBC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB25.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°α90°)角度,如圖所示.

(1)在圖中,求證:ACBD,且ACBD

(2)當(dāng)BDCD在同一直線上(如圖③)時(shí),若AC7,求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案