【題目】如圖,在矩形紙片中,,折疊紙片,使點(diǎn)剛好落在線段上,且折痕分別于相交,設(shè)折疊后點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),折痕分別于相交于點(diǎn),則線段的取值范圍是__________.

【答案】

【解析】

由四邊形ABCD是矩形,根據(jù)折疊的性質(zhì),易證得EFG是等腰三角形,即可得GF=EC,又由GFEC,即可得四邊形CEGF為平行四邊形,根據(jù)鄰邊相等的平行四邊形是菱形,即可得四邊形BGEF為菱形,如圖2,當(dāng)GA重合時(shí),CE取最大值,由折疊的性質(zhì)得CD=DG,∠CDE=GDE=45°,推出四邊形CEGD是矩形,根據(jù)矩形的性質(zhì)即可得到CE=CD=AB=3;如圖1,當(dāng)FD重合時(shí),CE取最小值,由折疊的性質(zhì)得AE=CE,根據(jù)勾股定理即可得到結(jié)論.

證明:∵四邊形ABCD是矩形,


ADBC,
∴∠GFE=FEC,
∵圖形翻折后點(diǎn)G與點(diǎn)C重合,EF為折線,
∴∠GEF=FEC
∴∠GFE=FEG,
GF=GE,
∵圖形翻折后BCGE完全重合,
BE=EC,


GF=EC,
∴四邊形CEGF為平行四邊形,
∴四邊形CEGF為菱形;
CE=CD=AB=3;
如圖2,當(dāng)GA重合時(shí),CE取最大值,
由折疊的性質(zhì)得AE=CE,
∵∠B=90°
AE2=AB2+BE2,即CE2=32+9-CE2
CE=5,
∴線段CE的取值范圍3≤CE≤5

故答案為:3≤CE≤5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y1=﹣x2+bx+c的圖象與x軸、y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B02),圖象的對(duì)稱軸交x軸于點(diǎn)C,一次函數(shù)y2mx+n的圖象經(jīng)過(guò)點(diǎn)BC

1)求二次函數(shù)的解析式y1和一次函數(shù)的解析式y2;

2)點(diǎn)Px軸下方的二次函數(shù)圖象上,且SACP33,求點(diǎn)P的坐標(biāo);

3)結(jié)合圖象,求當(dāng)x取什么范圍的值時(shí),有y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,中,三條內(nèi)角平分線相交于點(diǎn)于點(diǎn).

1)若,,求的度數(shù).

2)若,,則相等嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形中,,點(diǎn)邊上,平分,且.

1)求證:;

2)如圖2,已知邊于點(diǎn),交邊的延長(zhǎng)線于點(diǎn),且平分. ,試比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某校的數(shù)學(xué)學(xué)科實(shí)踐活動(dòng)課上,老師布置的任務(wù)是對(duì)本校七年級(jí)學(xué)生零花錢(qián)使用情況進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查結(jié)果分為“A.買(mǎi)零食”、“B.買(mǎi)學(xué)習(xí)用品”、“C.玩網(wǎng)絡(luò)游戲”、“D.捐款”四項(xiàng)進(jìn)行統(tǒng)計(jì),學(xué)生將統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖(圖1、圖2),請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)這次調(diào)查的學(xué)生為______人,圖2中,______,______.

2)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖.

3)在圖2的扇形統(tǒng)計(jì)圖中,表示“C.玩網(wǎng)絡(luò)游戲”所在扇形的圓心角度數(shù)為______度.

4)據(jù)統(tǒng)計(jì),遼陽(yáng)市七年級(jí)約有學(xué)生12000人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)零花錢(qián)用于“D.捐款”的學(xué)生約有______人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】模具廠計(jì)劃生產(chǎn)面積為4,周長(zhǎng)為m的矩形模具.對(duì)于m的取值范圍,小亮已經(jīng)能用代數(shù)的方法解決,現(xiàn)在他又嘗試從圖形的角度進(jìn)行探究,過(guò)程如下:

1)建立函數(shù)模型

設(shè)矩形相鄰兩邊的長(zhǎng)分別為x,y,由矩形的面積為4,得,即;由周長(zhǎng)為m,得,即.滿足要求的應(yīng)是兩個(gè)函數(shù)圖象在第   象限內(nèi)交點(diǎn)的坐標(biāo).

2)畫(huà)出函數(shù)圖象

函數(shù)的圖象如圖所示,而函數(shù)的圖象可由直線平移得到.請(qǐng)?jiān)谕恢苯亲鴺?biāo)系中直接畫(huà)出直線

3)平移直線,觀察函數(shù)圖象

當(dāng)直線平移到與函數(shù)的圖象有唯一交點(diǎn)時(shí),周長(zhǎng)m的值為   

在直線平移過(guò)程中,交點(diǎn)個(gè)數(shù)還有哪些情況?請(qǐng)寫(xiě)出交點(diǎn)個(gè)數(shù)及對(duì)應(yīng)的周長(zhǎng)m的取值范圍.

4)得出結(jié)論

若能生產(chǎn)出面積為4的矩形模具,則周長(zhǎng)m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的中點(diǎn),.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是秒.

(1)用含的代數(shù)式表示的長(zhǎng)度.

(2)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使點(diǎn)位于線段的垂直平分線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(4)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的中點(diǎn),.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是秒.

(1)用含的代數(shù)式表示的長(zhǎng)度.

(2)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使點(diǎn)位于線段的垂直平分線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(4)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)回顧)

七年級(jí)學(xué)習(xí)代數(shù)式求值時(shí),遇到這樣一類題“代數(shù)式的值與的取值無(wú)關(guān),求的值”,通常的解題方法是:把看作字母,看作系數(shù)合并同類項(xiàng),因?yàn)榇鷶?shù)式的值與的取值無(wú)關(guān),所以含項(xiàng)的系數(shù)為0,即原式=,所以,則.

(理解應(yīng)用)

(1)若關(guān)于的多項(xiàng)式的值與的取值無(wú)關(guān),求m值;

(2)已知,且3A+6B的值與無(wú)關(guān),求的值;

(能力提升)

(3)7張如圖1的小長(zhǎng)方形,長(zhǎng)為,寬為,按照?qǐng)D2方式不重疊地放在大長(zhǎng)方形ABCD內(nèi),大長(zhǎng)方形中未被覆蓋的兩個(gè)部分(圖中陰影部分),設(shè)右上角的面積為,左下角的面積為,當(dāng)AB的長(zhǎng)變化時(shí),的值始終保持不變,求的等量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案