分析:(1)由中位線定理即可求出DF的長;
(2)連接DF,過點(diǎn)F作FH⊥AB于點(diǎn)H,由四邊形CDEF為矩形,QK把矩形CDEF分為面積相等的兩部分,根據(jù)△HBF∽△CBA,對應(yīng)邊的比相等,就可以求得t的值;
(3)①當(dāng)點(diǎn)P在EF上(2
≤t≤5時(shí)根據(jù)△PQE∽△BCA,根據(jù)相似三角形的對應(yīng)邊的比相等,可以求出t的值;
②當(dāng)點(diǎn)P在FC上(5≤t≤7
)時(shí),PB+PF=BF就可以得到;
(4)當(dāng)PG∥AB時(shí)四邊形PHQG是矩形,由此可以直接寫出t.
解答:解:(1)Rt△ABC中,∠C=90°,AB=50,
∵D,F(xiàn)是AC,BC的中點(diǎn),
∴DE∥BC,EF∥AC,∴DF=
AB=25
(2)能.
如圖1,連接DF,過點(diǎn)F作FH⊥AB于點(diǎn)H,
∵D,F(xiàn)是AC,BC的中點(diǎn),
∴DE∥BC,EF∥AC,四邊形CDEF為矩形,
∴QK過DF的中點(diǎn)O時(shí),QK把矩形CDEF分為面積相等的兩部分
(注:可利用全等三角形借助割補(bǔ)法或用中心對稱等方法說明),
此時(shí)QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.
故t=
=7.
(3)①當(dāng)點(diǎn)P在EF上(2
≤t≤5)時(shí),
如圖2,QB=4t,DE+EP=7t,
由△PQE∽△BCA,得
=.
∴t=4
;
②當(dāng)點(diǎn)P在FC上(5≤t≤7
)時(shí),
如圖3,已知QB=4t,從而PB=5t,
由PF=7t-35,BF=20,得5t=7t-35+20.
解得t=7
;
(4)如圖4,t=1
;如圖5,t=7
.
(注:判斷PG∥AB可分為以下幾種情形:
當(dāng)0<t≤2
時(shí),點(diǎn)P下行,點(diǎn)G上行,可知其中存在PG∥AB的時(shí)刻,
如圖4;此后,點(diǎn)G繼續(xù)上行到點(diǎn)F時(shí),t=4,而點(diǎn)P卻在下行到點(diǎn)E再沿EF上行,發(fā)現(xiàn)點(diǎn)P在EF上運(yùn)動時(shí)不存在PG∥AB;
當(dāng)5≤t≤7
時(shí),點(diǎn)P,G均在FC上,也不存在,
PG∥AB;由于點(diǎn)P比點(diǎn)G先到達(dá)點(diǎn)C并繼續(xù)沿CD下行,所以在
7
<t<8中存在PG∥AB的時(shí)刻,
如圖5,當(dāng)8≤t≤10時(shí),點(diǎn)P,G均在CD上,不存在PG∥AB).