已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣,y2)在該圖象上,則y1>y2.其中正確的結(jié)論是 (填入正確結(jié)論的序號(hào)).
②④
【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系.
【分析】由圖象可先判斷a、b、c的符號(hào),可判斷①;由x=﹣1時(shí)函數(shù)的圖象在x軸下方可判斷②;由對(duì)稱軸方程可判斷③;由對(duì)稱性可知當(dāng)x=2時(shí),函數(shù)值大于0,可判斷④;結(jié)合二次函數(shù)的對(duì)稱性可判斷⑤;可得出答案.
【解答】解:
∵二次函數(shù)開口向下,且與y軸的交點(diǎn)在x軸上方,
∴a<0,c>0,
∵對(duì)稱軸為x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,
故①、③都不正確;
∵當(dāng)x=﹣1時(shí),y<0,
∴a﹣b+c<0,
故②正確;
由拋物線的對(duì)稱性可知拋物線與x軸的另一交點(diǎn)在2和3之間,
∴當(dāng)x=2時(shí),y>0,
∴4a+2b+c>0,
故④正確;
∵拋物線開口向下,對(duì)稱軸為x=1,
∴當(dāng)x<1時(shí),y隨x的增大而增大,
∵﹣2<﹣,
∴y1<y2,
故⑤不正確;
綜上可知正確的為②④,
故答案為:②④.
【點(diǎn)評(píng)】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的開口方向、對(duì)稱軸、增減性是解題的關(guān)鍵,注意數(shù)形結(jié)合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知點(diǎn) A(4,0)、B(0,2),∠AOB 的平分線交 AB 于 C.動(dòng)點(diǎn) M 從 O 點(diǎn)出發(fā),以每 秒 2 個(gè)單位長(zhǎng)度的速度沿 x 軸向點(diǎn) A 作勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn) N 從 O 點(diǎn)出發(fā),以每秒 1 個(gè)單位長(zhǎng)度的 速度沿 y 軸向點(diǎn) B 作勻速運(yùn)動(dòng),點(diǎn) P、Q 為點(diǎn) M、N 關(guān)于直線 OC 的對(duì)稱點(diǎn),設(shè) M 運(yùn)動(dòng)的時(shí)間為 t
(0<t<2)秒.
(1)求 C 點(diǎn)的坐標(biāo),并直接寫出點(diǎn) P、Q 的坐標(biāo)(用含 t 的代數(shù)式表示); 運(yùn)動(dòng)過程中,
①是否存在某一時(shí)刻使得△CPQ 為等腰直角三角形?若存在,求出 t 的值;若不存在,請(qǐng)說明理由;
②設(shè)△CPQ 與△OAB 重疊部分的面積為 S,試求 S 關(guān)于 t 的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某超市用3000元購(gòu)進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果數(shù)量是第一次的2倍還多300千克.如果超市按每千克9元的價(jià)格出售,當(dāng)大部分干果售出后,余下的600千克按售價(jià)的8折售完.
(1)該種干果的第一次進(jìn)價(jià)是每千克多少元?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)為2,當(dāng)y1>y2時(shí),x的取值范圍是( 。
A.x<﹣2或x>2 B.x<﹣2或0<x<2
C.﹣2<x<0或0<x<﹣2 D.﹣2<x<0或x>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在一塊長(zhǎng)為22米、寬為17米的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300平方米.若設(shè)道路寬為x米,則根據(jù)題意可列出方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是函數(shù)y=與函數(shù)y=在第一象限內(nèi)的圖象,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PA⊥x軸于點(diǎn)A,交y=的圖象于點(diǎn)C,PB⊥y軸于點(diǎn)B,交y=的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求四邊形ODPC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形網(wǎng)格由小正方形構(gòu)成,每一個(gè)小正方形的邊長(zhǎng)都為1,點(diǎn)A和
點(diǎn)B是小正方形的頂點(diǎn),則點(diǎn)A和點(diǎn)B之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
方程2x2 -3x+2=0的二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別為( )
A.3和-2 B.2和-3 C.2和3 D.-3和2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com