,,_________;若,則的值是_________.

答案:33,6
解析:

解析:;


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

17、實際問題:某學校共有18個教學班,每班的學生數(shù)都是40人.為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46
;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份售價不超過10元,每天可銷售400份;若每份售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價x(元)取整數(shù),且要求售價一定高于成本價,用y(元)表示該店日銷售利潤、(日銷售利潤=每天的銷售額-套餐成本-每天固定支出)
(1)當每份套餐售價不超過10元時,請寫出y與x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當每份售價超過10元時,該店既要吸引顧客,使每天銷售量較大,又要有最高的日銷售利潤.按此要求,每份套餐的售價應(yīng)定為多少元?此時日銷售利潤為多少?
(3)新年即將到來,該快餐店準備為某福利院30個小朋友送去新年的禮物,已知購買一份禮物需要20元,于是快餐店統(tǒng)一將套餐的售價定為10元以上,并且每賣出一份快餐就捐出2元作為福利院小朋友購買禮物的經(jīng)費,則快餐店在售價不超過14元的情況下至少將套餐定為多少錢一份,可使日銷售利潤(不包含已捐出的錢)達到900元?并通過分析判斷此時所集經(jīng)費是否能夠為福利院每個小朋友都購買一份禮物.
(其中
19
≈4.36,
17
≈4.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、某商品的進價為每件40元,售價為每件50元時,每個月可賣出210件;若每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元),
(1)設(shè)每件商品的售價上漲x元,則每個月可賣出
210-10x
件,該商品每件利潤為
10+x
元;
(2)每件商品的售價定為多少元時,每個月的利潤恰為2200元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•六盤水)假期,六盤水市教育局組織部分教師分別到A、B、C、D四個地方進行新課程培訓,教育局按定額購買了前往四地的車票.如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

(1)若去C地的車票占全部車票的30%,則去C地的車票數(shù)量是
30
30
張,補全統(tǒng)計圖.
(2)若教育局采用隨機抽取的方式分發(fā)車票,每人一張(所有車票的形狀、大小、質(zhì)地完全相同且充分洗勻),那么余老師抽到去B地的概率是多少?
(3)若有一張去A地的車票,張老師和李老師都想要,決定采取旋轉(zhuǎn)轉(zhuǎn)盤的方式來確定.其中甲轉(zhuǎn)盤被分成四等份且標有數(shù)字1、2、3、4,乙轉(zhuǎn)盤分成三等份且標有數(shù)字7、8、9,如圖2所示.具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當指針指向的兩個數(shù)字之和是偶數(shù)時,票給李老師,否則票給張老師(指針指在線上重轉(zhuǎn)).試用“列表法”或“樹狀圖”的方法分析這個規(guī)定對雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1-x2|≥|y1-y2|,則點P1與點P2的“非常距離”為|x1-x2|;
若|x1-x2|<|y1-y2|,則點P1與點P2的“非常距離”為|y1-y2|.
例如:點P1(1,2),點P1(3,5),因為|1-3|<|2-5|,所以點P1與點P2的“非常距離”為|2-5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).
(1)已知點A(-數(shù)學公式),B為y軸上的一個動點,①若點A與點B的“非常距離”為2,寫出滿足條件的點B的坐標;②直接寫出點A與點B的“非常距離”的最小值;
(2)如圖2,已知C是直線數(shù)學公式上的一個動點,點D的坐標是(0,1),求點C與點D的“非常距離”最小時,相應(yīng)的點C的坐標.

查看答案和解析>>

同步練習冊答案