【題目】完成推理過程

如圖,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求證:AE=CF.

證明∵AB∥DC,

∴∠1=

∵AE⊥BD,CF⊥BD,

∴∠AEB=

∵BF=DE,

∴BF﹣EF=DE﹣EF

=

∴△ABE≌△CDF

∴AE=CF

【答案】∠2,∠CFD,BE,DF,(ASA),(全等三角形的對應(yīng)邊相等).

【解析】

根據(jù)平行線,垂線,判定全等的方法即可解題.

證明:∵AB∥DC,

∴∠1=∠2.

∵AE⊥BD,CF⊥BD,

∴∠AEB=∠CFD,

∵BF=DE,

∴BF﹣EF=DE﹣EF,

∴BE=DF.

∴△ABE≌△CDF(ASA).

∴AE=CF(全等三角形的對應(yīng)邊相等),

故答案為:∠2,∠CFD,BE,DF,(ASA),(全等三角形的對應(yīng)邊相等).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ

(2)請判斷△APQ是什么三角形,試說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中中途休息了一段時間設(shè)他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知α是銳角,且點A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關(guān)系是(
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點AB、C在小正方形的頂點上.

在圖中畫出與關(guān)于直線l成軸對稱的;

三角形ABC的面積為______;

AC為邊作與全等的三角形,則可作出______個三角形與全等;

在直線l上找一點P,使的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具零售店準備從批發(fā)市場選購A、B兩種文具,批發(fā)價A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價x(元/件)均成一次函數(shù)關(guān)系.(如圖)
(1)求y與x的函數(shù)關(guān)系式;
(2)該店計劃這次選購A、B兩種文具的數(shù)量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計算,則該店這次有哪幾種進貨方案?
(3)若A種文具的零售價比B種文具的零售價高2元/件,求兩種文具每天的銷售利潤W(元)與A種文具零售價x(元/件)之間的函數(shù)關(guān)系式,并說明A、B兩種文具零售價分別為多少時,每天銷售的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,分別以AB、AC為邊作ABD和ACE,且AD=AB,AC=AE,DAB=CAE,連接DC與BE.G、F分別是DC與BE的中點.

(1)求證:DC=BE;

(2)DAB=8,求AFG的度數(shù);

(3)DAB=,AFG與的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).

1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

2)畫出A1B1C1沿x軸向右平移4個單位長度后得到的A2B2C2;

3)如果AC上有一點Ma,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便居民低碳出行,聊城市公共自行車租賃系統(tǒng)(一期)試運行.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長;
(2)求點E到AB的距離.(精確到0.1cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

同步練習(xí)冊答案