三角形三邊滿足,則這個(gè)三角形是(   )

A.銳角三角形    B.鈍角三角形    C.直角三角形    D.等腰三角形

 

【答案】

C

【解析】

試題分析:先去括號(hào),再根據(jù)勾股定理的逆定理即可判斷.

,

,即,

∴這個(gè)三角形是直角三角形,

故選C.

考點(diǎn):本題考查了勾股定理的逆定理

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

38、如圖1中的△ABC是直角三角形,∠C=90°.現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對邊上,那么符合條件的矩形可以畫出兩個(gè),如圖2所示:

(1)設(shè)圖2中的矩形ACBD和矩形AEFB的面積分別為S1和S2,則S1
=
S2(填“>”,“=”,“<”)
(2)如圖3中的△ABC是銳角三角形,且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么
符合要求的矩形可以畫出
3
個(gè),并在圖3中把符合要求的矩形畫出來.
(3)在圖3中所畫出的矩形中,它們的面積之間具有怎樣的關(guān)系?并說明你的理由;
(4)猜想圖3中所畫的矩形的周長之間的大小關(guān)系,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、學(xué)習(xí)了勾股定理以后,有同學(xué)提出“在直角三角形中,三邊滿足a2+b2=c2,或許其他的三角形三邊也有這樣的關(guān)系”.讓我們來做一個(gè)實(shí)驗(yàn)!
(1)畫出任意一個(gè)銳角三角形,量出各邊的長度(精確到1毫米),較短的兩條邊長分別是a=
6
mm;b=
8
mm;較長的一條邊長c=
9
mm.比較=a2+b2
c2(填寫“>”,“<”,或“=”);
(2)畫出任意的一個(gè)鈍角三角形,量出各邊的長度(精確到1毫米),較短的兩條邊長分別是a=
6
mm;b=
8
mm;較長的一條邊長c=
11
mm.比較a2+b2
c2(填寫“>”,“<”,或“=”);
(3)根據(jù)以上的操作和結(jié)果,對這位同學(xué)提出的問題,你猜想的結(jié)論是:
若△ABC是銳角三角形,則有a2+b2>c2
若△ABC是鈍角三角形,∠C為鈍角,則有a2+b2<c2
,類比勾股定理的驗(yàn)證方法,相信你能說明其能否成立的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的命題:①中國國家男子足球隊(duì)和巴西國家男子足球隊(duì)比賽,中國國家男子足球隊(duì)贏得比賽這一事件是不可能事件;②到三角形三頂點(diǎn)距離相等的點(diǎn)是這個(gè)三角形三邊的中垂線的交點(diǎn);③一組數(shù)據(jù)-2,-1,0,1,2,3的極差是5,中位數(shù)是0和1;④如果三個(gè)正數(shù)a、b、c的三條線段滿足a+b>c,則一定可以圍成一個(gè)三角形;⑤若點(diǎn)P是△ABC中∠ABC的平分線和外角∠ACE的平分線的交點(diǎn),則∠BPC=
12
∠A.以上命題中,正確的命題序號(hào)是
 
.(將正確的命題序號(hào)全部寫上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面短文:
如圖①,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對邊上,那么符合要求的矩形可以畫出兩個(gè)矩形ACBD和矩形AEFB(如圖②)精英家教網(wǎng)精英家教網(wǎng)
解答問題:
(1)設(shè)圖②中矩形ACBD和矩形AEFB的面積分別為S1、S2,則S1
 
S2(填“>”“=”或“<”).
(2)如圖③,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫
 
個(gè),利用圖③把它畫出來.
(3)如圖④,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫出
 
個(gè),利用圖④把它畫出來.
(4)在(3)中所畫出的矩形中,哪一個(gè)的周長最?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙教版初中數(shù)學(xué)八年級(jí)上2.5直角三角形練習(xí)卷(解析版) 題型:解答題

閱讀下面短文:如圖1,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成長方形,使△ABC的兩個(gè)頂點(diǎn)為長方形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形這一邊的對邊上,那么符合要求的長方形可以畫出兩個(gè):長方形ACBD和長方形AEFB(如圖2)。

解答問題:

(1)設(shè)圖2中長方形ACBD和長方形AEFB的面積分別為S1,S2,則S1    S2(填“>”、“=”或“<”)

(2)如圖3,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成長方形,那么符合要求的長方形可以畫出        個(gè),利用圖3把它畫出來。

(3)如圖4,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成長方形,那么符合要求的長方形可以畫出       個(gè),利用圖4把它畫出來。

(4)在(3)中所畫出的長方形中,哪一個(gè)的周長最?為什么?

 

查看答案和解析>>

同步練習(xí)冊答案