【題目】山西省平遙縣政府為進(jìn)一步挖掘“雙林寺、老醯水鎮(zhèn)、平遙古城”的旅游 價(jià)值,計(jì)劃在2019年開工建設(shè)一條途經(jīng)平遙高鐵站、雙林寺、老醯(讀,醋的意思) 水鎮(zhèn)、平遙古城的“旅游+交通”融合軌道觀光線.甲、乙兩個(gè)工程隊(duì)計(jì)劃參與工程建設(shè),若讓甲隊(duì)單獨(dú)施工天完成該項(xiàng)工程的,然后乙隊(duì)加入,兩隊(duì)還需共同施工天,才能完成該項(xiàng)工程.
(1)若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程?
(2)若先讓甲隊(duì)施工且甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過天,則乙隊(duì)加入后至 少要施工多少天才能完成該項(xiàng)工程?
【答案】(1)乙隊(duì)單獨(dú)施工需天完成該項(xiàng)工程;(2)乙隊(duì)加入后至少要施工天才能完成該項(xiàng)工程
【解析】
(1)設(shè)乙隊(duì)單獨(dú)施工需天完成該項(xiàng)工程,根據(jù)甲隊(duì)的工作時(shí)間及工作總量可知其工作效率為,則甲乙的總工作效率為,合作15天,完成了工程的,由此列出方程求解即可;
(2)設(shè)乙隊(duì)施工天完成該項(xiàng)工程,根據(jù)甲乙完成的工程總量至少等于1可列出關(guān)于y的一元一次不等式,求解即可.
解:設(shè)乙隊(duì)單獨(dú)施工需天完成該項(xiàng)工程
甲隊(duì)單獨(dú)施工天完成該項(xiàng)工程的
甲隊(duì)單獨(dú)施工天完成該項(xiàng)工程,
由題意得
解得:
經(jīng)檢驗(yàn):是原方程的解,且符合實(shí)際意義
答:乙隊(duì)單獨(dú)施工需天完成該項(xiàng)工程.
設(shè)乙隊(duì)施工天完成該項(xiàng)工程.
由題意列不等式
解得:
答:乙隊(duì)加入后至少要施工天才能完成該項(xiàng)工程
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,若點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿折線運(yùn)動(dòng)(回到點(diǎn)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)點(diǎn)在上時(shí),且滿足時(shí),求出此時(shí)的值;
(2)當(dāng)點(diǎn)在上時(shí),求出為何值時(shí),為以為腰的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(1)求證:AM=AD+MC;
(2)若AD=4,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索:小明和小亮在研究一個(gè)數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點(diǎn)P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點(diǎn)P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點(diǎn)作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請?jiān)谏厦孀C明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究: 如圖,直線的表達(dá)式為,與軸交于點(diǎn),直線交軸于點(diǎn),,與交于點(diǎn),過點(diǎn)作軸于點(diǎn),.
(1)求點(diǎn)的坐標(biāo);
(2)求直線的表達(dá)式;
(3)求的值;
(4)在軸上是否存在點(diǎn),使得?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,點(diǎn)F、E分別在邊AC、AB上,連接DE、DF,且∠AFD+∠B=180°.
(1)求證:BD=FD;
(2)當(dāng)AF+FD=AE時(shí),求證:∠AFD=2∠AED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)P是AB邊上一點(diǎn)(不與A,B重合),過點(diǎn)P作PQ⊥CP,交AD邊于點(diǎn)Q,且,連結(jié).
(1)求證:四邊形是矩形;
(2)若CP=CD,AP=2,AD=6時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,點(diǎn)E在CD上,點(diǎn)F在AB上,連接AE、CF、DF、BE,∠DAE=∠BCF.
(1)如圖1,求證:四邊形DFBE是平行四邊形;
(2)如圖2,若E是CD的中點(diǎn),連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com