【題目】ABC中,ABAC,∠A60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF120°,DE與線段AB相交于點(diǎn)EDF與線段AC相交于點(diǎn)F

1)如圖1,若DFAC,垂足為FAB4,求BE的長(zhǎng);

2)如圖2,將(1)中的∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點(diǎn)F

求證:BE+CFAB

【答案】1BE1;(2)證明見解析.

【解析】

(1)由是等邊三角形求出BC的長(zhǎng),再根據(jù),求出,從而得出是有一個(gè)銳角等于的直角三角形,即可求得BE

2)過D與M,作于N,由題(1)可知,又由題意知,D順時(shí)針旋轉(zhuǎn)一定角度后得到,所以,可證,則有,最后結(jié)合BMME、BE以及CN、NFCF間的關(guān)系即可求證.

1)如圖1,由題意得,是等邊三角形,

,

點(diǎn)D是線段BC的中點(diǎn),

,

,即

,

,

,

中,;

2)如圖2,過DM,作N,

由(1)可知:,

,

,

由題意知,D順時(shí)針旋轉(zhuǎn)一定角度后得到,

(旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)角相等),

,

,

即得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ymx24mx+2m+1x軸交于Ax10),Bx2,0)兩點(diǎn),與y軸交于點(diǎn)C,且x2x12

1)求拋物線的解析式;

2E是拋物線上一點(diǎn),∠EAB2OCA,求點(diǎn)E的坐標(biāo);

3)設(shè)拋物線的頂點(diǎn)為D,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿拋物線向上運(yùn)動(dòng),連接PD,過點(diǎn)PPQPD,交拋物線的對(duì)稱軸于點(diǎn)Q,以QD為對(duì)角線作矩形PQMD,當(dāng)點(diǎn)P運(yùn)動(dòng)至點(diǎn)(5,t)時(shí),求線段DM掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,ACBC,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB'C'的位置,連接CB,CB1,則AC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO中,ABOB,OB=,AB=1,把ABO繞點(diǎn)O旋轉(zhuǎn)150°后得到A1B1O,則點(diǎn)A1的坐標(biāo)為

A.(﹣1, B.(﹣1,)或(﹣2,0) C.,﹣1)或(0,﹣2) D.,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx﹣3的圖象與x軸的兩個(gè)交點(diǎn)分別為A(1,0)、B(3,0),與y軸的交點(diǎn)為C

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)在x軸上方的二次函數(shù)圖象上,是否存在一點(diǎn)E使得以B、C、E為頂點(diǎn)的三角形的面積為?若存在,求出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB中,∠AOB90°P為弧AB上的一點(diǎn),過點(diǎn)PPCOA,垂足為C,PCAB交于點(diǎn)D.若PD2,CD1,則該扇形的半徑長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)坐標(biāo)分別為A0,3)、B3、4)、C2,2)(網(wǎng)格中每個(gè)正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).

1)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A′BC′,使A′BC′ABC位似,且位似比為21,則點(diǎn)C′的坐標(biāo)是______;

2A′BC′的面積是_______平方單位;

3)在x軸上找出點(diǎn)P,使得點(diǎn)PB與點(diǎn)A距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠ABC25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△ABC,且點(diǎn)A在邊AB′上,則旋轉(zhuǎn)角的度數(shù)為( 。

A. 65°B. 60°C. 50°D. 40°

查看答案和解析>>

同步練習(xí)冊(cè)答案