【題目】一批貨物要運往某地,貨主準(zhǔn)備租用汽車運輸公司的甲、乙兩種貨車,已知過去兩次租用這種貨車的情況如下表:
現(xiàn)租用該公司3輛甲種貨車及5輛乙種貨車一次剛好運完這批貨,如果按每噸付運費30元計算,貨主應(yīng)付運費多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園有一個拋物線形狀的觀景拱橋ABC,其橫截面如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線的解析式為y=﹣ +c且過頂點C(0,5)(長度單位:m)
(1)直接寫出c的值;
(2)現(xiàn)因搞慶典活動,計劃沿拱橋的臺階表面鋪設(shè)一條寬度為1.5m的地毯,地毯的價格為20元/m2 , 求購買地毯需多少元?
(3)在拱橋加固維修時,搭建的“腳手架”為矩形EFGH(H、G分別在拋物線的左右側(cè)上),并鋪設(shè)斜面EG.已知矩形EFGH的周長為27.5m,求斜面EG的傾斜角∠GEF的度數(shù).(精確到0.1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),若兩車之間的距離S關(guān)于客車行駛時間X的函數(shù)關(guān)系式當(dāng)0≤x≤時,S=-160x+600;當(dāng)≤x≤6時,S=160x﹣600;當(dāng)6≤x≤10時,S=60x,設(shè)客車離甲地的距離為y1(km),出租車離甲地的距離為y2(km),y1,y2與x的函數(shù)關(guān)系圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點A、B(點A在點B左邊),與y軸交于點C,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(4,0),與y軸交于點D(0,﹣2).
(1)求拋物線l2的解析式;
(2)點P為線段AB上一動點(不與A、B重合),過點P作y軸的平行線交拋物線l1于點M,交拋物線l2于點N.
①當(dāng)四邊形AMBN的面積最大時,求點P的坐標(biāo);
②當(dāng)CM=DN≠0時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=2,AC=4,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點D,則線段BD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于正整數(shù)m,若m=pq(p≥q>0,且p,q為整數(shù)),當(dāng)p-q最小時,則稱pq為m的“最佳分解”,并規(guī)定f(m)=(如:12的分解有12×1,6×2,4×3,其中,4×3為12的最佳分解,則f(12)=).關(guān)于f(m)有下列判斷:①f(27)=3;②f(13)=;③f(2018)=;④f(2)=f(32).其中,正確判斷的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
連結(jié)AC、EF.在圖中找一個與△FAE全等的三角形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點D,與直角邊AC相交于E,F(xiàn)兩點,連結(jié)DE,已知∠B=30°,⊙O的半徑為6,弧DE的長度為2π.
(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com