如圖,從熱氣球C處測得地面A、B兩處的俯角分別為30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,求AB兩處的距離.

 

 

【答案】

米.

【解析】

試題分析:本題考查的是解直角三角形的應用-仰角俯角問題,熟知銳角三角函數(shù)的定義是解答此題的關鍵.先根據(jù)從熱氣球C處測得地面A、B兩點的俯角分別為30°、45°可求出∠BCD與∠ACD的度數(shù),再由直角三角形的性質(zhì)求出AD與BD的長,根據(jù)AB=AD+BD即可得出結(jié)論.

試題解析:

解:依題意,可知:∠CAB=300,∠CBA=450,CD⊥AB,CD=100米.

∵CD⊥AB

∴∠CDA=∠CDB=900

∴BD=CD=100 ,

∵在Rt△ADC中,

 

∴AB兩處的距離為米.

考點:解直角三角形的應用-仰角俯角問題.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•福州)如圖,從熱氣球C處測得地面A、B兩點的俯角分別是30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,從熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是
100(
3
+1)米
100(
3
+1)米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,從熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,求AB兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年福建省福州市中考數(shù)學試卷(解析版) 題型:選擇題

如圖,從熱氣球C處測得地面A、B兩點的俯角分別是30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是( )

A.200米
B.200
C.220
D.100()米

查看答案和解析>>

同步練習冊答案