如圖,已知在直角坐標(biāo)系中,半徑為2的圓的圓心坐標(biāo)為(3,-3),當(dāng)該圓向上平移    個單位時,它與x軸相切.
【答案】分析:欲求直線和圓有幾個公共點,關(guān)鍵是求出圓心到直線的距離d,再與半徑r進行比較.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:設(shè)圓的半徑為r,圓心到直線的距離d,要使圓與x軸相切,必須d=r;
∵此時d=3,
∴圓向上平移1或5個單位時,它與x軸相切.
點評:本題考查的是直線與圓的位置關(guān)系,解決此類問題可通過比較圓心到直線距離d與圓半徑大小關(guān)系完成判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.精英家教網(wǎng)
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.

(1)求點P的坐標(biāo);

(2)如果二次函數(shù)的圖像經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖像的頂點坐標(biāo)M;

(3)如果將第(2)小題中的二次函數(shù)的圖像向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年上海市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習(xí)冊答案