【題目】如圖,四幅圖象分別表示變量之間的關系,請按圖象的順序,將下面的四種情境與之對應排序.正確的順序是( 。

籃球運動員投籃時,投出去的籃球的高度與時間的關系

去超市購買同一單價的水果,所付費用與水果數(shù)量的關系

李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的關系

周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關系

A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③

【答案】D

【解析】

反映了不同類別問題中,兩個量的函數(shù)關系,按照問題與圖象對號的方法,選擇順序.

①籃球運動員投籃時,投出去的籃球的高度與時間高應是拋物線形狀,故①正確;

②去超市購買同一單價的水果,所付費用與水果數(shù)量的圖象應先從0開始,變大,故④正確;

③李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的應先從某一數(shù)值開始,變大,故②正確;

④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的圖象由0開始,逐漸變大,而后不變,進而減小為0,故③正確;

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調查了多少名同學?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的20名學生,估計每個興趣小組至少需要準備多少名教師?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

(問題情境)

教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗證勾股定理嗎?

(探索新知)

從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積 + 4個直角三角形的面積,從而得數(shù)學等式: ;(用含字母a、bc的式子表示)化簡證得勾股定理:

(初步運用)

1)如圖1,若b=2a ,則小正方形面積:大正方形面積= ;

2)現(xiàn)將圖1中上方的兩直角三角形向內折疊,如圖2,若a= 4,b= 6此時空白部分的面積為 ;

(遷移運用)

如果用三張含60°的全等三角形紙片,能否拼成一個特殊圖形呢?帶著這個疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗證,發(fā)現(xiàn)含60°的三角形三邊a、bc之間的關系,寫出此等量關系式及其推導過程.

知識補充:如圖4,含60°的直角三角形,對邊y :斜邊x=定值k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,,繞點C旋轉,角的兩邊分別與AB、AD交于點E、F,同時也分別與DA、BA的延長線交于點G、H.

如圖1,若

求證:;

繞點C旋轉的過程中,線段AC、AG、AH之間存在著怎樣的數(shù)量關系?并說明理由.

如圖2,若,經探究得的值為常數(shù)k,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式

(2)求點D坐標,并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當線段PA與線段PB之差達到最大時求點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中, , , ,DAB邊的中點,EAC邊上一點,聯(lián)結DE,過點DBC邊于點F,聯(lián)結EF

(1)如圖1,當時,求EF的長;

(2)如圖2,當點EAC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;

(3)如圖3,聯(lián)結CDEF于點Q,當是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,平面直角坐標系中,Ax軸正半軸,B0,1),∠OAB30°

1)如圖1,已知AB2.點Cy軸的正半軸上,當ABC為等腰三角形時,直接寫出點C的坐標為   ;

2)如圖2,以AB為邊作等邊ABE,ADABOA的垂直平分線于D,求證:BDOE;

3)如圖3,在(2)的條件下,連接DEABF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN=90°,在射線AM上取一點B,在射線AN上取一點C,連接BC,再作點A關于直線BC的對稱點D,連接ADBD,移動點C,當2AD=BC時,∠ABD的度數(shù)是_____

查看答案和解析>>

同步練習冊答案