如圖,兩個反比例函數(shù)(其中k1>k2>0)在第一象限內(nèi)的圖象依次是C1和C2,設點P在C1上,PC⊥x軸于點C,交C2于點A,PD⊥y軸于點D,交C2于點B,則四邊形PAOB的面積為   
【答案】分析:根據(jù)反比例函數(shù)中k的幾何意義可知.
解答:解:∵S矩形OCPD=k1,S△AOC=S△DOB=k2
∴四邊形PAOB的面積=S矩形OCPD-2S△AOC=k1-k2
點評:主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩個反比例函數(shù)y=
2
x
和y=
1
x
在第一象限的圖象如圖所示,當P在y=
2
x
的圖象上,PC⊥x軸于點C,交y=
1
x
的圖象于點A,PD⊥y軸于點D,交y=
1
x
的圖象于點B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩個反比例函數(shù)y=
k1
x
和y=
k2
x
(其中k1>0>k2)在第一象限內(nèi)的圖象是C1,第二、四象限內(nèi)的圖象是C2,設點P在C1上,PC⊥x軸于點M,交C2于點C,PA⊥y軸于點N,交C2于點A,AB∥PC,CB∥AP相交于點B,則四邊形ODBE的面積為( 。
A、|k1-k2|
B、
k1
|k2|
C、|k1•k2|
D、
k22
k1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•德州)如圖,兩個反比例函數(shù)y=
1
x
y=-
2
x
的圖象分別是l1和l2.設點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則三角形PAB的面積為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y=
1
x
和y=-
2
x
的圖象分別是l1和l2.設點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則△PAB的面積為
9
2
9
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,兩個反比例函數(shù)y1=
1
x
y2=
2
x
在第一象限內(nèi)的圖象依次是C1和C2,設點p1在c2上,p1E1⊥x軸于點E1,p1D1⊥y軸與點D1,交C1于點A1交c1與點B1
(1)求出四邊形P1A1OB1的面積S1
(2)若y3=
3
x
在第一象限的圖象是c3,p2是C3上的點,P2E2⊥x軸于點E2,交C2于點A2,P2D2⊥y軸于點D2,交C2于點B2,則四邊形P2A2OB2的面積S2=
1
1

(3)按此類推,試猜想四邊形PnAnOBn的面積Sn=
1
1
,在所給坐標系中畫出草圖,并驗證你的猜想.

查看答案和解析>>

同步練習冊答案