【題目】已知:如圖,OAO的半徑,以OA為直徑的CO的弦AB相交于點(diǎn)D,連結(jié)OD并延長交O于點(diǎn)E,連結(jié)AE

1)求證:AD=DB

2)若AO=10,DE=4,求AE的長.

【答案】1)見解析;(2AE=4.

【解析】

1)由OA是⊙C的直徑知ODAB,在⊙O中依據(jù)垂徑定理可得;
2)在RtADO中求得AD=8,再在RtADE中利用勾股定理可得答案.

1)∵ OA是⊙C的直徑

∴∠ADO=90°

O是⊙O的圓心 ADO=90°

AD=DB

2)∵ ADO=90°

OD+AD=AO

OE=AO=10,DE=4,

OD=OE-DE=6

AD=8

RtADEDE+AD=AE

AE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,點(diǎn)在對角線,.

(1),的度數(shù);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的桌面上,背面朝上擺放著同一幅撲克牌中的三張撲克牌,它們分別是紅桃A、方塊6、黑桃9.將紅桃A、方塊6、黑桃9上數(shù)字分別記為數(shù)字1、6、9.將它們洗勻后,小紅先從中隨機(jī)抽取一張撲克牌記下數(shù)字后放回,洗勻后,再隨機(jī)抽取一張撲克牌記下數(shù)字.用畫樹狀圖或列表的方法,求小明兩次抽取的撲克牌的數(shù)字之和是5的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】奔跑吧,兄弟!節(jié)目組,預(yù)設(shè)計(jì)一個(gè)新的游戲:奔跑路線需經(jīng)A、B、C、D四地.如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向、在C地北偏西45°方向.C地在A地北偏東75°方向.且BD=BC=30m.從A地到D地的距離是( 。

A. 30m B. 20m C. 30m D. 15m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn)A(3,0),B(﹣1,0),C(0,3),連接AC,點(diǎn)M是拋物線AC段上的一點(diǎn),且CM∥x軸.

(1)求拋物線的解析式;

(2)求∠CAM的正切值;

(3)點(diǎn)Q在拋物線上,且∠BAQ=∠CAM,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線L上有AB兩個(gè)觀測點(diǎn),AB的正東方向,AB2km.有一艘小船在點(diǎn)P處,從A處測得小船在北偏西60°的方向,從B處測得小船在北偏東45°方向.

1)求P點(diǎn)到海岸線l的距離.

2)小船從點(diǎn)P處沿射線AP的方向繼續(xù)行駛,求小船到B處的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDE,DEAC于點(diǎn)F,作EGACAC于點(diǎn)G,交BC于點(diǎn)H

(1)求證:AEF≌△EDH

(2)AB=3,DH=2DF,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DEBC于點(diǎn)E.

(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)過點(diǎn)DDFAB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請按下列要求畫圖:

1)將△ABC先向右平移4個(gè)單位長度、再向下平移1個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案