關(guān)于x的方程x2-px-2q=0(p,q是正整數(shù)),若它的正根小于或等于4,則正根是整數(shù)的概率是( )
A.
B.
C.
D.
【答案】分析:利用求根公式得出方程的兩根,再利用它的正根小于或等于4,得出所有符合要求的解,再利用正根是整數(shù)的個(gè)數(shù)求出概率即可.
解答:解:關(guān)于x的方程x2-px-2q=0(p,q是正整數(shù))的兩根為:
,
其中正根為:,由題意得出:≤4,
≤8-p,
兩邊同時(shí)平方得出:p2+8q≤64-16p+p2,
化簡為:q+2p≤8,
∵p,q是正整數(shù),
∴所有組合為:
q=1,p=1,2,3,
q=2,p=1,2,3,
q=3,p=1,2,
q=4,p=1,2,
q=5,p=1,
q=6,p=1,
共12組,
其中滿足是整數(shù)的有:
q=1,p=1,
q=2,p=3,
q=3,p=1,
q=4,p=2,
q=6,p=1,
共5組,所以正根是整數(shù)的概率是:
故選;A.
點(diǎn)評(píng):此題主要考查了一元二次方程的根以及概率求法,根據(jù)已知得出所有符合要求的p,q的值是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的方程x2+x-
1
4
k=0
沒有實(shí)數(shù)根,那么k的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+px=q時(shí),應(yīng)在方程兩邊同時(shí)加上( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2x+k=0的一根是2,則k=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

通過觀察,發(fā)現(xiàn)方程不難求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
;x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
;x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)觀察上述方程及其解,可猜想關(guān)于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a
;
(2)試驗(yàn)證:當(dāng)x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的結(jié)論,解關(guān)于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
無解,求a的值?

查看答案和解析>>

同步練習(xí)冊(cè)答案