【題目】如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點(diǎn)C、A(1,1)、B(3,1).動點(diǎn)PO點(diǎn)出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動的時間為t秒(0<t<4),OPQ與直角梯形OABC重疊部分的面積為S.

(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;

(2)求St的函數(shù)關(guān)系式;

(3)將△OPQ繞著點(diǎn)P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)OQ在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

【答案】(1)y=﹣(x﹣2)2+;(2)S=t2(0<t≤2);S=t-1(2<t≤3);S=﹣t2+4t﹣(3<t<4);(3)存在;t=12;

【解析】

1)設(shè)出此拋物線的解析式,把AB兩點(diǎn)的坐標(biāo)代入此解析式求出a、b的值即可;
2)由與t的取值范圍不能確定,故應(yīng)分三種情況進(jìn)行討論,
①當(dāng)0<t≤2,重疊部分的面積是SOPQ,過點(diǎn)AAFx軸于點(diǎn)F,在RtOPQ中利用三角形的面積公式及特殊角的三角函數(shù)值即可求出其面積;
②當(dāng)2<t≤3,設(shè)PQAB于點(diǎn)G,作GHx軸于點(diǎn)H,∠OPQ=QOP=45°,則四邊形OAGP是等腰梯形,
重疊部分的面積是S梯形OAGP,由梯形的面積公式即可求解;
③當(dāng)3<t<4,設(shè)PQAB交于點(diǎn)M,交BC于點(diǎn)N,重疊部分的面積是S五邊形OAMNC
因?yàn)?/span>PNCBMN都是等腰直角三角形,所以重疊部分的面積是S五邊形OAMNC=S梯形OABC-S△BMN,進(jìn)而可求出答案;
3)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)可求出將OPQ繞著點(diǎn)P順時針旋轉(zhuǎn)90°PQ兩點(diǎn)的坐標(biāo),再根據(jù)拋物線的解析式即可求出t的值.

1)方法一:由圖象可知:拋物線經(jīng)過原點(diǎn),

設(shè)拋物線解析式為y=ax2+bxa≠0).

A1,1),B31)代入上式得:

,

解得

∴所求拋物線解析式為y=x2+x

方法二:∵A11),B3,1),

∴拋物線的對稱軸是直線x=2

設(shè)拋物線解析式為y=ax22+ha≠0

O0,0),A1,1)代入

解得,

∴所求拋物線解析式為y=x22+

2)分三種情況:

①當(dāng)0t≤2,重疊部分的面積是SOPQ,過點(diǎn)AAFx軸于點(diǎn)F

A1,1),

∴在RtOAF中,AF=OF=1,∠AOF=45°,在RtOPQ中,OP=t,∠OPQ=QOP=45°

PQ=OQ=tcos 45°=tS=t2,

②當(dāng)2t≤3,設(shè)PQAB于點(diǎn)G,作GHx軸于點(diǎn)H,∠OPQ=QOP=45°

則四邊形OAGP是等腰梯形,重疊部分的面積是S梯形OAGP

AG=FH=t2

S=AG+OPAF=t+t2×1=t1

③當(dāng)3t4,設(shè)PQAB交于點(diǎn)M,交BC于點(diǎn)N,重疊部分的面積是S五邊形OAMNC

因?yàn)椤?/span>PNC和△BMN都是等腰直角三角形,

所以重疊部分的面積是S五邊形OAMNC=S梯形OABCSBMN

B31),OP=t,

PC=CN=t3,

S=2+3×14t2

S=t2+4t

3)存在.

當(dāng)O點(diǎn)在拋物線上時,將Ot,t)代入拋物線解析式,解得t=0(舍去),t=1;

當(dāng)Q點(diǎn)在拋物線上時,Qt, t)代入拋物線解析式得t=0(舍去),t=2

t=12

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)A(1,2)、B兩點(diǎn),過點(diǎn)Ax軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點(diǎn)B的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點(diǎn)M、N,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN(如圖1),則

(1)線段BM、DNMN之間的數(shù)量關(guān)系是______;

(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN(如圖2),線段BM、DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;

(3)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到(如圖3)的位置時,線段BM、DNMN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表:

乙校成績統(tǒng)計(jì)表

分?jǐn)?shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請你將圖②補(bǔ)充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計(jì)算知s2=135,s2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,CD是∠ACB的平分線, DE垂直平分BC,若DE=2,則AB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定在網(wǎng)格內(nèi)的某點(diǎn)進(jìn)行一定條件操作到達(dá)目標(biāo)點(diǎn):H代表所有的水平移動,H1代表向右水平移動1個單位長度,H-1代表向左平移1個單位長度;S代表上下移動,S1代表向上移動1個單位長度,S-1代表向下移動1個單位長度,表示點(diǎn)P在網(wǎng)格內(nèi)先一次性水平移動,在此基礎(chǔ)上再一次性上下移動;表示點(diǎn)P在網(wǎng)格內(nèi)先一次性上下移動,在此基礎(chǔ)上再一次性水平移動.

1)如圖,在網(wǎng)格中標(biāo)出移動后所到達(dá)的目標(biāo)點(diǎn);

2)如圖,在網(wǎng)格中的點(diǎn)B到達(dá)目標(biāo)點(diǎn)A,寫出點(diǎn)B的移動方法________________;

3)如圖,在網(wǎng)格內(nèi)有格點(diǎn)線段AC,現(xiàn)需要由點(diǎn)A出發(fā),到達(dá)目標(biāo)點(diǎn)D,使得A、CD三點(diǎn)構(gòu)成的格點(diǎn)三角形是等腰直角三角形,在圖中標(biāo)出所有符合條件的點(diǎn)D的位置并寫出點(diǎn)A的移動方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點(diǎn)坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:

;;方程有兩個不相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______

查看答案和解析>>

同步練習(xí)冊答案