【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE= 度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.
【答案】(1)90°;(2)①α+β=180°,理由見(jiàn)解析;②當(dāng)點(diǎn)D在射線BC上時(shí),α+β=180°;當(dāng)點(diǎn)D在射線BC的反向延長(zhǎng)線上時(shí),α=β.
【解析】(1)問(wèn)要求∠BCE的度數(shù),可將它轉(zhuǎn)化成與已知角有關(guān)的聯(lián)系,根據(jù)已知條件和全等三角形的判定定理,得出△ABD≌△ACE,再根據(jù)全等三角形中對(duì)應(yīng)角相等,最后根據(jù)直角三角形的性質(zhì)可得出結(jié)論;(2)問(wèn)在第(1)問(wèn)的基礎(chǔ)上,將α+β轉(zhuǎn)化成三角形的內(nèi)角和;(3)問(wèn)是第(1)問(wèn)和第(2)問(wèn)的拓展和延伸,要注意分析兩種情況.
解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD與△ACE中,
AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°,
∴∠BCE=90°;
(2)①α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAD+∠DAC=∠EAC+∠DAC.
即∠BAD=∠CAE.
在△ABD與△ACE中,
AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°;
②當(dāng)點(diǎn)D在射線BC上時(shí),α+β=180°;
理由:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵在△ABD和△ACE中,
AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵∠BAC+∠ABD+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴α+β=180°;
當(dāng)點(diǎn)D在射線BC的反向延長(zhǎng)線上時(shí),α=β.
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵在△ADB和△AEC中,
AD=AE,∠DAB=∠EAC,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
“點(diǎn)睛”本題考查三角形全等的判定,以及全等三角形的性質(zhì);兩者綜合運(yùn)用,促進(jìn)角與角相互轉(zhuǎn)換,將未知角轉(zhuǎn)化為已知角是關(guān)鍵.本題的亮點(diǎn)是由特例引出一般情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段垂直平分線上的點(diǎn)到這條線段的距離相等.理解這條性質(zhì)要注意兩點(diǎn):①點(diǎn)一定在上; ②距離指的是點(diǎn)到線段的兩個(gè)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng),第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第二次將點(diǎn)A1向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3,…按照這種移動(dòng)規(guī)律進(jìn)行下去,第51次移動(dòng)到點(diǎn)A51,那么點(diǎn)A51所表示的數(shù)為( 。
A. ﹣74 B. ﹣77 C. ﹣80 D .﹣83
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( )
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)y=﹣2x+3的圖象向下平移4個(gè)單位后的函數(shù)圖象的解析式為( )
A.y=﹣2x+7B.y=﹣6x+3C.y=﹣2x﹣1D.y=﹣2x﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)-2-(+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
(4).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com