【題目】如圖,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB⊙O的切線.

2)已知AOO于點(diǎn)E,延長(zhǎng)AOO于點(diǎn)D,tanD=,求的值.

(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2) (3)

【解析】試題分析:(1)過(guò)OOF⊥ABF,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的長(zhǎng),再證明△B0F∽△BAC,得,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問(wèn)題.

試題解析:(1)證明:作OF⊥ABF

∵AO∠BAC的角平分線,∠ACB=90

∴OC=OF

∴AB⊙O的切線

2)連接CE

∵AO∠BAC的角平分線,

∴∠CAE=∠CAD

∵∠ACE所對(duì)的弧與∠CDE所對(duì)的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,設(shè)AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易證Rt△B0F∽R(shí)t△BAC

,

設(shè)BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考點(diǎn):圓的綜合題.

型】解答
結(jié)束】
22

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;

【答案】(1)y=-x2x+8(2)

【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;

(2)過(guò)點(diǎn)FFGAB,垂足為G,由EFAC,得BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CABFG,根據(jù)S=SBCE-SBFE,求Sm之間的函數(shù)關(guān)系式.

解:(1)解方程x2-10x+16=0得x12,x28

∴B20)、C0,8

∴所求二次函數(shù)的表達(dá)式為y=-x2x8

(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,

∵OA6OC8, ∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

過(guò)點(diǎn)F作FG⊥AB,垂足為G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykxb與反比例函數(shù)的圖象交于A(-4,n),B(2,-4)兩點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求直線ABx軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;

(3)根據(jù)圖象直接寫(xiě)出關(guān)于x的方程的解及不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b是﹣5的相反數(shù),c=﹣|3|,且a、b、c分別是點(diǎn)A、BC在數(shù)軸上對(duì)應(yīng)的數(shù).

1)求a、bc的值;

2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?

3)在(2)的條件下,P、Q出發(fā)的同時(shí),動(dòng)點(diǎn)M從點(diǎn)C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),速度為每秒6個(gè)單位長(zhǎng)度,點(diǎn)M追上點(diǎn)Q后立即返回沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),追上后點(diǎn)M再運(yùn)動(dòng)幾秒,MQ的距離等于MP距離的兩倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線ABx軸相交于點(diǎn)C,ADx軸于點(diǎn)D.

(1)m=  ;

(2)求點(diǎn)C的坐標(biāo);

(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一列有理數(shù)-12,-3,4,-56,……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,1” 中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,5”C 的位置是有理數(shù) ,2017應(yīng)排在A、E 的位置.其中兩個(gè)填空依次為

A.24 , AB.24, AC.25, ED.25, E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線m的表達(dá)式為y =3x+3,且與x軸交于點(diǎn)B,直線n經(jīng)過(guò)點(diǎn)A40),且與直線m交于點(diǎn)Ct,﹣3

1)求直線n的表達(dá)式.

2)求ABC的面積.

3)在直線n上存在異于點(diǎn)C的另一點(diǎn)P,使ABPABC的面積相等,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)PQ分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q2 cm/s的速度向D移動(dòng)

(1)P、Q兩點(diǎn)從出發(fā)開(kāi)始到幾秒?四邊形PBCQ的面積為33cm2;

(2)P、Q兩點(diǎn)從出發(fā)開(kāi)始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校設(shè)計(jì)了如圖所示的雕塑,取名階梯, 現(xiàn)在工廠師傅打算用油漆噴刷所有暴露面,經(jīng)測(cè)量,已知每個(gè)小立方體的棱長(zhǎng)為0.5.

1)請(qǐng)你畫(huà)出從它的正面、左面、上面三個(gè)不同方向看到的平面圖形.

2)請(qǐng)你幫助工人師傅計(jì)算一下,需要噴刷油漆的總面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過(guò)動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是(

A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且ACBD時(shí),四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案