【題目】如圖,在斜坡上按水平距離間隔50米架設電纜,塔柱上固定電纜的位置,離塔柱底部的距離均為20米.若以點為原點,以水平地面所在的直線為軸,建立如圖所示的坐標系,已知斜坡所在直線的解析式為,兩端掛起的電纜下垂近似成二次項系數(shù)為拋物線的形狀.

1)點的坐標為 ,點的坐標為

2)求電纜近似成的拋物線的解析式;

3)小明說:在拋物線頂點處,下垂的電纜在豎直方向上與斜坡的距離最近。你是否認同?請計算說明。

【答案】1;(2;(3)不認同,見解析.

【解析】

1)直接由題意即可得到答案.

2)設拋物線的解析式為,將點A0,20),C50,30)代入求解可得;

3)先求得拋物線的頂點,設為拋物線上一點,過點軸的垂線,交斜坡于點,交軸一點,列出的解析式可得出MN最小值時x的值與拋物線頂點的比較.

解:(1)由題意易知P點坐標為(020),Q點坐標為(50,30.

2)設拋物線的函數(shù)解析式為,

代入,得

解得

拋物線的函數(shù)解析式為

3)不認同.

拋物線的頂點為

如圖,設為拋物線上一點,過點軸的垂線,交斜坡于點,交軸一點

設點,則

時,有最小值,此時下垂的電纜在豎直方向上斜坡的距離最近.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;

(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)與一次函數(shù),令W=.

(1)若的函數(shù)圖像交于x軸上的同一點.

①求的值;

②當為何值時,W的值最小,試求出該最小值;

(2)當時,W隨x的增大而減小.

①求的取值范圍;

②求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平分,,

1】求的度數(shù)

2】如圖,若把變成FDA的延長線上,,其它條件不變,求的度數(shù);

3】如圖,若把變成平分,其它條件不變,的大小是否變化,并請說明理由.(此題9分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出ak,b的值及關于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以P,QA,B為頂點的四邊形是平行四邊形?若存在,請直接寫出PQ的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在RtABC中,ABAC3,在△ABC內作第一個內接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內作第二個內接正方形HIKJ;再取線段KJ的中點Q,在△QHI內作第三個內接正方形依次進行下去,則第2014個內接正方形的邊長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax-2x+c(a≠0)x軸,y軸分別交于點AB,C三點,已知點(-2,0)C(0,-8),點D是拋物線的頂點.

(1)求拋物線的解析式及頂點D的坐標;

(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

同步練習冊答案