【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在RtABC中,∠C90°,AC3,BC4

1)試在圖中作出△ABCA為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;

2)若點B的坐標(biāo)為(﹣35),試在圖中畫出直角坐標(biāo)系,并直接寫出A、C兩點的坐標(biāo);

3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并直接寫出點A2B2、C2的坐標(biāo).

【答案】1)見解析;

2)(0,1),(﹣31);

3)(0,﹣1),(3,﹣5),(3,﹣1).

【解析】

1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出B、C的對應(yīng)點B1、C1即可;

2)利用B點坐標(biāo)畫出直角坐標(biāo)系,然后寫出A、C的坐標(biāo);

3)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出點A2、B2、C2的坐標(biāo),然后描點即可.

解:(1)如圖,△AB1C1為所作;

2)如圖,A點坐標(biāo)為(0,1),C點的坐標(biāo)為(﹣3,1);

3)如圖,△A2B2C2為所作,點A2B2、C2的坐標(biāo)煩惱為(0,﹣1),(3,﹣5),(3,﹣1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠ABC90°,ABBC4,點O是邊AC的中點,連接OB,將AOB繞點A順時針旋轉(zhuǎn)α°ANM,連接CM,點P是線段CM的中點,連接PB,PN

1)如圖1,當(dāng)α180時,請直接寫出線段PNPB之間滿足的位置和數(shù)量關(guān)系;

2)如圖2,當(dāng)0α180時,請?zhí)剿骶段PNPB之間滿足何位置和數(shù)量關(guān)系?證明你的結(jié)論

3)當(dāng)AOB旋轉(zhuǎn)至C,MN三點共線時,線段BP的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,EAB的中點,連接CE,連接DEACF,AD=4,AB=6.

(1)求證:△ADC∽△ACB;

(2)AC的值;

(3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y1k1x的圖象與反比例函數(shù)y2x0)的圖象相交于點A2),點B是反比例函數(shù)圖象上一點,它的橫坐標(biāo)是3,連接OB,AB,則△AOB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為直角ABC中斜邊AC上一點,且ABAD,以AB為直徑的⊙OAD于點F,交BD于點E,連接BF,BF

1)求證:BEFE;

2)求證:∠AFE=∠BDC

3)已知:sinBAE,AB6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列汽車標(biāo)志中,是中心對稱圖形的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

13x26x+10(用配方法)

23x12xx1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示).

1)求二次函數(shù)y=﹣x2+x+6的頂點坐標(biāo)和x軸的交點坐標(biāo);

2)直接寫出新函數(shù)對應(yīng)的解析式;

3)當(dāng)直線y=﹣x+m與新圖象有四個交點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列是中心對稱圖形但不是軸對稱圖形的是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案