【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并直接寫出A、C兩點的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標(biāo).
【答案】(1)見解析;
(2)(0,1),(﹣3,1);
(3)(0,﹣1),(3,﹣5),(3,﹣1).
【解析】
(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出B、C的對應(yīng)點B1、C1即可;
(2)利用B點坐標(biāo)畫出直角坐標(biāo)系,然后寫出A、C的坐標(biāo);
(3)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出點A2、B2、C2的坐標(biāo),然后描點即可.
解:(1)如圖,△AB1C1為所作;
(2)如圖,A點坐標(biāo)為(0,1),C點的坐標(biāo)為(﹣3,1);
(3)如圖,△A2B2C2為所作,點A2、B2、C2的坐標(biāo)煩惱為(0,﹣1),(3,﹣5),(3,﹣1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠ABC=90°,AB=BC=4,點O是邊AC的中點,連接OB,將△AOB繞點A順時針旋轉(zhuǎn)α°至△ANM,連接CM,點P是線段CM的中點,連接PB,PN.
(1)如圖1,當(dāng)α=180時,請直接寫出線段PN和PB之間滿足的位置和數(shù)量關(guān)系;
(2)如圖2,當(dāng)0<α<180時,請?zhí)剿骶段PN和PB之間滿足何位置和數(shù)量關(guān)系?證明你的結(jié)論
(3)當(dāng)△AOB旋轉(zhuǎn)至C,M,N三點共線時,線段BP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,連接CE,連接DE交AC于F,AD=4,AB=6.
(1)求證:△ADC∽△ACB;
(2)求AC的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)y2=(x>0)的圖象相交于點A(,2),點B是反比例函數(shù)圖象上一點,它的橫坐標(biāo)是3,連接OB,AB,則△AOB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為直角△ABC中斜邊AC上一點,且AB=AD,以AB為直徑的⊙O交AD于點F,交BD于點E,連接BF,BF.
(1)求證:BE=FE;
(2)求證:∠AFE=∠BDC;
(3)已知:sin∠BAE=,AB=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示).
(1)求二次函數(shù)y=﹣x2+x+6的頂點坐標(biāo)和x軸的交點坐標(biāo);
(2)直接寫出新函數(shù)對應(yīng)的解析式;
(3)當(dāng)直線y=﹣x+m與新圖象有四個交點時,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com