已知P為第一象限內(nèi)一點(diǎn),OP與x軸正半軸的夾角為a,且tana=,OP=5,則點(diǎn)P的坐標(biāo)為    ;若將OP繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°角到OQ位置,則點(diǎn)Q的坐標(biāo)為   
【答案】分析:畫出草圖.作PM⊥x軸于M,QN⊥y軸于N.
在△OPM中根據(jù)三角函數(shù)可求PM、OM的長(zhǎng),確定P點(diǎn)坐標(biāo);
根據(jù)旋轉(zhuǎn)性質(zhì),ON=OM,QN=PM.
根據(jù)Q在第二象限確定其坐標(biāo).
解答:解:如圖,作PM⊥x軸于M,QN⊥y軸于N.
在△OPM中,
tana=,OP=5,
∴PM=3,OM=4.
∴P(4,3);
根據(jù)旋轉(zhuǎn)的性質(zhì),
ON=OM=4,QN=PM=3.
又Q在第二象限,
∴Q(-3,4).
點(diǎn)評(píng):畫出草圖分析,注意旋轉(zhuǎn)前后對(duì)應(yīng)線段相等,根據(jù)點(diǎn)所在象限確定點(diǎn)的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,矩形OABC在平面直角坐標(biāo)系內(nèi)的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B的坐標(biāo)為(10,8).
(1)直接寫出點(diǎn)C的坐標(biāo)為:C(
 
,
 
);
(2)已知直線AC與雙曲線y=
mx
(m≠0)
在第一象限內(nèi)有一交點(diǎn)Q為(5,n);
①求m及n的值;
②若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿折線AO→OC的路徑以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)C處停止.求△OPQ的面積S與點(diǎn)P的運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式,并求當(dāng)t取何值時(shí)S=10.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點(diǎn)P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長(zhǎng)是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
①求拋物線和直線AB的解析式;
②點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
③點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=
9
8
S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:第一象限內(nèi)的點(diǎn)A在一反比例函數(shù)圖象上,過(guò)點(diǎn)A作AB⊥x軸,垂足為B點(diǎn),連接AO,已知△AOB的面積為4.①求反比例函數(shù)的解析式;②若點(diǎn)A的縱坐標(biāo)為4,過(guò)點(diǎn)A的直線與x軸相交于點(diǎn)P,且△APB與△AOB相似,求所有符合條件的點(diǎn)P的坐標(biāo);③在②的條件下,求過(guò)P、O、A的拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大港區(qū)一模)已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=
kx
的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象信息回答問題:在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于該正比例函數(shù)的值?
(3)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3過(guò)點(diǎn)M作直線MN∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),求過(guò)點(diǎn)M、A的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知圖中的曲線是反比例函數(shù)y=
m-5x
(m為常數(shù))圖象的一支.
(1)這個(gè)反比例函數(shù)圖象的另一支在第幾象限?常數(shù)m的取值范圍是什么?
(2)在這個(gè)反比例函數(shù)圖象的某一支上任取點(diǎn)M(a1,b1)和點(diǎn)N(a2,b2),若a1<a2,則b1與b2有怎樣的關(guān)系?
(3)若該函數(shù)的圖象與正比例函數(shù)y=2x的圖象在第一象限內(nèi)的交點(diǎn)為A,過(guò)A點(diǎn)作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時(shí),求點(diǎn)A的坐標(biāo)及反比例函數(shù)的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案