【題目】如圖,一次函數(shù)y=2x+4的圖象與x、y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)求直線BD的表達(dá)式.
【答案】(1)A(﹣2,0),點(diǎn)B(0,4),D(2,﹣2);(2)y=﹣3x+4.
【解析】
(1)由于ー次函數(shù)y=2x+4的圖象與x、y軸分別相交于點(diǎn)A、B,所以利用函數(shù)解析式即可求出AB兩點(diǎn)的坐標(biāo),然后過D作DH⊥x軸于H點(diǎn),由四邊形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接著證明△ABO≌△DAH,最后利用全等三角形的性質(zhì)可以得到DH=AO=2,AH=BO=4,從而求出點(diǎn)D的坐標(biāo);
(2)利用待定系數(shù)法即可求解
解:(1)∵當(dāng)y=0時(shí),2x+4=0,x=﹣2.
∴點(diǎn)A(﹣2,0).
∵當(dāng)x=0時(shí),y=4.
∴點(diǎn)B(0,4).
過D作DH⊥x軸于H點(diǎn),
∵四邊形ABCD是正方形,
∴∠BAD=∠AOB=∠AHD=90°,AB=AD.
∴∠BAO+∠ABO=∠BAO+∠DAH,
∴∠ABO=∠DAH.
∴△ABO≌△DAH.
∴DH=AO=2,AH=BO=4,
∴OH=AH﹣AO=2.
∴點(diǎn)D(2,﹣2).
(2)設(shè)直線BD的表達(dá)式為y=kx+b.
∴
解得 ,
∴直線BD的表達(dá)式為y=﹣3x+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外學(xué)習(xí)小組在設(shè)計(jì)一個(gè)長(zhǎng)方形時(shí)鐘鐘面時(shí),欲使長(zhǎng)方形的寬為20厘米,時(shí)鐘的中心在長(zhǎng)方形對(duì)角線的交點(diǎn)上,數(shù)字2在長(zhǎng)方形的頂點(diǎn)上,數(shù)字3、6、9、12標(biāo)在所在邊的中點(diǎn)上,如圖所示。
(1)問長(zhǎng)方形的長(zhǎng)應(yīng)為多少?
(2)請(qǐng)你在長(zhǎng)方框上點(diǎn)出數(shù)字1的位置,并說明確定該位置的方法;
(3)請(qǐng)你在長(zhǎng)方框上點(diǎn)出鐘面上其余數(shù)字的位置,并寫出相應(yīng)的數(shù)字(說明:要畫出必要的、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某集團(tuán)決定購(gòu)買、兩種型號(hào)的污水處理設(shè)備共10臺(tái),其中每臺(tái)價(jià)格及月處理污水量如下表:
價(jià)格(萬元/元) | 15 | 12 |
處理污水量(噸/月) | 250 | 220 |
經(jīng)預(yù)算,該集團(tuán)準(zhǔn)備購(gòu)買設(shè)備的資金不高于130萬元.
(1)請(qǐng)你設(shè)計(jì)該企業(yè)有哪幾種購(gòu)買方案?
(2)試通過計(jì)算,說明哪種方案處理污水多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB的中點(diǎn),點(diǎn)D在線段CB上.
(1)圖中共有 條線段.
(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請(qǐng)你再寫出兩個(gè)有關(guān)線段的和與差的關(guān)系式:
① ;② .
(3)若AB=8,DB=1.5,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
二次根式的除法,要化去分母中的根號(hào),需將分子、分母同乘以一個(gè)恰當(dāng)?shù)亩胃剑?/span>
例如:化簡(jiǎn).
解:將分子、分母同乘以得:.
類比應(yīng)用:
(1)化簡(jiǎn): ;
(2)化簡(jiǎn): .
拓展延伸:
寬與長(zhǎng)的比是的矩形叫黃金矩形.如圖①,已知黃金矩形ABCD的寬AB=1.
(1)黃金矩形ABCD的長(zhǎng)BC= ;
(2)如圖②,將圖①中的黃金矩形裁剪掉一個(gè)以AB為邊的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否為黃金矩形,并證明你的結(jié)論;
(3)在圖②中,連結(jié)AE,則點(diǎn)D到線段AE的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)B、C為線段AD上的兩點(diǎn),AB=BC=CD,點(diǎn)E為線段CD的中點(diǎn),點(diǎn)F為線段AD的三等分點(diǎn),若BE=14,則線段EF=____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E在上,連接DE,AE,連接CE并延長(zhǎng)交AB于點(diǎn)F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=17,AC=10,高AD=8,則△ABC的周長(zhǎng)是( )
A.54B.44C.36或48D.54或33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車”,這批單車分為A、B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.
(1)今年年初,“共享單車”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng),投放A、B兩種款型的單車共100輛,總價(jià)值36800元.求本次試點(diǎn)投放的A型車、B型車的輛數(shù).
(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開.按照試點(diǎn)投放中A、B兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬元.問整個(gè)城區(qū)全面鋪開時(shí)投放的A型車、B型車至少多少輛?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com