【題目】如圖,在平面直角坐標(biāo)系xOy,已知直線(xiàn)AByx+4x軸于點(diǎn)A,y軸于點(diǎn)B.直線(xiàn)CDyx﹣1與直線(xiàn)AB相交于點(diǎn)M,x軸于點(diǎn)C,y軸于點(diǎn)D

(1)直接寫(xiě)出點(diǎn)B和點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P是射線(xiàn)MD上的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P的橫坐標(biāo)是x,△PBM的面積是S,Sx之間的函數(shù)關(guān)系;

(3)當(dāng)S=20時(shí),平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)E使以點(diǎn)B、E、P、M為頂點(diǎn)的四邊形是平行四邊形?若存在請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)E的坐標(biāo);若不存在說(shuō)明理由

【答案】1B0,4),D0,-1);(2Sx>-5);3)存在,滿(mǎn)足條件的點(diǎn)E的坐標(biāo)為(8,)或(﹣8,(﹣2,).

【解析】

(1)利用y軸上的點(diǎn)的坐標(biāo)特征即可得出結(jié)論;

(2)先求出點(diǎn)M的坐標(biāo),再分兩種情況討論①當(dāng)Py軸右邊時(shí)用三角形的面積之和即可得出結(jié)論,②當(dāng)Py軸左邊時(shí)用三角形的面積之差即可得出結(jié)論;

(3)分三種情況利用對(duì)角線(xiàn)互相平分的四邊形是平行四邊形和線(xiàn)段的中點(diǎn)坐標(biāo)的確定方法即可得出結(jié)論

1)∵點(diǎn)B是直線(xiàn)AByx+4y軸的交點(diǎn)坐標(biāo),∴B(0,4).

∵點(diǎn)D是直線(xiàn)CDyx﹣1y軸的交點(diǎn)坐標(biāo),∴D(0,﹣1);

(2)如圖1. ,解得

∵直線(xiàn)ABCD相交于M,∴M(﹣5,).

B(0,4),D(0,﹣1),∴BD=5.

∵點(diǎn)P在射線(xiàn)MD,∴分兩種情況討論

①當(dāng)Py軸右邊時(shí),x≥0時(shí),SSBDM+SBDP5(5+x

②當(dāng)Py軸左邊時(shí),-5<x<0時(shí),SSBDMSBDP5(5-|x|);

綜上所述S=x>-5).

(3)如圖2,由(1)知,S當(dāng)S=20時(shí),20,∴x=3,∴P(3,﹣2).

分三種情況討論

當(dāng)BP是對(duì)角線(xiàn)時(shí),BP的中點(diǎn)G,連接MG并延長(zhǎng)取一點(diǎn)E'使GE'=GM設(shè)E'(m,n).

B(0,4),P(3,﹣2),∴BP的中點(diǎn)坐標(biāo)為(,1).

M(﹣5,),∴1,∴m=8,n,∴E'(8,);

當(dāng)AB為對(duì)角線(xiàn)時(shí),的方法得E(﹣8,);

當(dāng)MP為對(duì)角線(xiàn)時(shí),的方法得E'(﹣2,).

綜上所述滿(mǎn)足條件的點(diǎn)E的坐標(biāo)為(8,)、(﹣8,)、(﹣2,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB8,點(diǎn)E、F分別在邊AB、BC上,BEBF2,點(diǎn)P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),則PE+PF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、bc三個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,下列幾個(gè)判斷:①a<c<b;②-a<b;③a+b>0;④c-a<0;⑤a+c>0;⑥;正確的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在梯形ABCD中,ADBC,A=90°,AD=2,AB=4,BC=5,在射線(xiàn)BC任取一點(diǎn)M,聯(lián)結(jié)DM,作∠MDN=BDC,MDN的另一邊DN交直線(xiàn)BC于點(diǎn)N(點(diǎn)N在點(diǎn)M的左側(cè)).

(1)當(dāng)BM的長(zhǎng)為10時(shí),求證:BDDM;

(2)如圖(1),當(dāng)點(diǎn)N在線(xiàn)段BC上時(shí),設(shè)BN=x,BM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)如果△DMN是等腰三角形,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線(xiàn)與CB的延長(zhǎng)線(xiàn)相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).

1求證:ADP∽△ABQ;

2若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線(xiàn)段BM的最小值;

3若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(83),定點(diǎn)D的坐標(biāo)為(120),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)t=   時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B

2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

3)如圖2,過(guò)定點(diǎn)E5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)Rx軸、y軸的平行線(xiàn),分別交EFBC于點(diǎn)M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分10分)

某校為了解“陽(yáng)光體育”活動(dòng)的開(kāi)展情況,從全校名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每名學(xué)生只能填寫(xiě)一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖

根據(jù)以上信息,解答下列問(wèn)題:

(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)在扇形統(tǒng)計(jì)圖中,= ,= ,表示區(qū)域的圓心角為 °;

(3)全校學(xué)生中喜歡籃球的人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在日歷中任意圈出一個(gè)3×3的正方形,則里面九個(gè)數(shù)不滿(mǎn)足的關(guān)系式是(  )

A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6

B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8

C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5

D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)是2,DE分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CFBC,連結(jié)CDEF.

(1)求證:四邊形CDEF是平行四邊形;

(2)求四邊形BDEF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案