【題目】某服裝店出售某品牌的棉衣,進(jìn)價(jià)為100/件,當(dāng)售價(jià)為150/件時(shí),平均每天可賣(mài)30件;為了盡快減少庫(kù)存迎接元旦的到來(lái),商店決定降價(jià)銷(xiāo)售,增加利潤(rùn),經(jīng)調(diào)查每件降價(jià)5元,則每天可多賣(mài)10件,現(xiàn)要想平均每天獲利2000元,且讓顧客得到實(shí)惠,那么每件棉衣應(yīng)降價(jià)多少元?

【答案】每件棉衣應(yīng)降價(jià)25元.

【解析】

設(shè)每件棉衣應(yīng)降價(jià)x元,根據(jù)平均每天獲利2000元,即可得出關(guān)于x的一元二次方程,解方程即可得出x的值,取其中較大的值,此題得解.

解:設(shè)每件棉衣應(yīng)降價(jià)x元,由題意得:(150x100)(30+10×)=2000,

整理得:x235x+2500,

解得:x110x225,

2510

x的值選25

答:每件棉衣應(yīng)降價(jià)25元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2bxc(a0)經(jīng)過(guò)A(1,0),B(4,0)C(0,2)三點(diǎn).

1)求這條拋物線和直線BC的解析式;

2E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的特征線.例如,點(diǎn)M13)的特征線有:x=1,y=3y=x+2,y=x+4.問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)BC兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.

1)直接寫(xiě)出點(diǎn)Dm,n)所有的特征線 ;

2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;

3)點(diǎn)PAB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A在平行于y軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=13,BC=10,點(diǎn)DBC的中點(diǎn),DEAB于點(diǎn)E,則tanBDE的值等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形.已知拋物線y=-與其夢(mèng)想直線交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的夢(mèng)想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______

2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將ACMAM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若AMN為該拋物線的夢(mèng)想三角形,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小元設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.

已知:如圖,⊙O及⊙O上一點(diǎn)P

求作:過(guò)點(diǎn)P的⊙O的切線.

作法:如圖,作射線OP;

① 在直線OP外任取一點(diǎn)A,以A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;

②連接并延長(zhǎng)BA與⊙A交于點(diǎn)C;

③作直線PC;

則直線PC即為所求.根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:∵ BC是⊙A的直徑,

∴ ∠BPC=90° (填推理依據(jù)).

OPPC

又∵ OP是⊙O的半徑,

PC是⊙O的切線 (填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種商品,經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),該商品的周銷(xiāo)售量y(件)是售價(jià)x(元/件)的一次函數(shù).其售價(jià)、周銷(xiāo)售量、周銷(xiāo)售利潤(rùn)w(元)的三組對(duì)應(yīng)值如表:

售價(jià)x(元/件)

50

60

80

周銷(xiāo)售量y(件)

100

80

40

周銷(xiāo)售利潤(rùn)w(元)

1000

1600

1600

注:周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)﹣進(jìn)價(jià))

1)求y關(guān)于x的函數(shù)解析式_____;

2)當(dāng)售價(jià)是_____/件時(shí),周銷(xiāo)售利潤(rùn)最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,∠ABC60°,AB4,BCm,EBC邊上的動(dòng)點(diǎn),連結(jié)AE,作點(diǎn)B關(guān)于直線AE的對(duì)稱點(diǎn)F

1)若m6,①當(dāng)點(diǎn)F恰好落在∠BCD的平分線上時(shí),求BE的長(zhǎng);

②當(dāng)E、C重合時(shí),求點(diǎn)F到直線BC的距離;

2)當(dāng)點(diǎn)F到直線BC的距離d滿足條件:22≤d≤2+4,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問(wèn)題:

成績(jī)分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計(jì)

1

(1)寫(xiě)出a,b,c的值;

(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;

(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案