【題目】△OAB⊙O的內(nèi)接三角形,∠AOB=120°,過OOE⊥AB于點(diǎn)E,交⊙O于點(diǎn)C,延長OB至點(diǎn)D,使OB=BD,連CD.

(1)求證: CD⊙O切線;

(2)若FOE上一點(diǎn),BF的延長線交⊙OG,連OG,,CD=6,求SGOB

【答案】(1)詳見解析;(2)9.

【解析】試題分析:(1)證明BC=OB=BD,可得∠OCD=90°,所以CD是⊙O切線;

(2)先求BE=3,O的半徑為6,過GGHOEH,求GH的長也是6,即HO重合,OGOF,根據(jù)比例=,求得OF=12-6,最后利用面積和求面積.

試題解析:(1)連接BC,

OA=OB,OEAB,

∴∠AOC=BOC,

∵∠AOB=120°,

∴∠AOC=BOC=60°,

OC=OB,

BC=OB=BD,

CB=OD,

∴∠OCD=90°,

CD是⊙O切線;

(2)由(1)知:∠OCD=90°,

∵∠OEB=90°,

ABCD,

∴△OEB∽△OCD,

,

,

BE=3

RtOEB中,sin60°=,

OB=3 =6,

OC=6,OE=3,

GGHOEH,

GHBE,

∴△GHF∽△BEF,

,

GH=6,

GH=OG=6,

HO重合,OGOF,

,

OF+EF=OE=3,

OF=12﹣6,

SGOB=SGOF+SBOF=OG=(OG+BE)=(12﹣6)(6+3)=9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(5,0)兩點(diǎn),直線y=-x+3與y軸交于點(diǎn)C,,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PFx軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m。

(1)求拋物線的解析式;(2)若PE=5EF,求m的值;(3)若點(diǎn)E是點(diǎn)E關(guān)于直線PC的對(duì)稱點(diǎn)、是否存在點(diǎn)P,使點(diǎn)E/落在y軸上?若存在,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校八年級(jí)的體育老師為了了解本年級(jí)學(xué)生喜歡球類運(yùn)動(dòng)的情況,抽取了該年級(jí)部分學(xué)生對(duì)籃球、足球、排球、乒乓球的愛好情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖(說明:每位學(xué)生只選一種自己最喜歡的一種球類),請(qǐng)根據(jù)這兩幅圖形解答下列問題:

1)在本次調(diào)查中,體育老師一共調(diào)查了多少名學(xué)生?

2)將兩個(gè)不完整的統(tǒng)計(jì)圖補(bǔ)充完整;

3)求出乒乓球在扇形中所占的圓心角的度數(shù)?

4)已知該校有760名學(xué)生,請(qǐng)你根據(jù)調(diào)查結(jié)果估計(jì)愛好足球和排球的學(xué)生共計(jì)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,相交于點(diǎn),相交于點(diǎn),的平分線,的平分線。

1)若,求的大小;

2)若,求的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,RtOAB的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3),點(diǎn)C的坐標(biāo)為(10),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種頻率結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是(  )

A. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”

B. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)朝上的面點(diǎn)數(shù)是6

C. 在“石頭剪刀、和”的游戲中,小明隨機(jī)出的是“剪刀”

D. 袋子中有1個(gè)紅球和2個(gè)黃球,只有顏色上的區(qū)別,從中隨機(jī)取出一個(gè)球是黃球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CDy軸相交于點(diǎn)E

(1)直線CD的函數(shù)表達(dá)式為______;(直接寫出結(jié)果)

(2)x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

(3)若點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為( 。

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b2),且滿足(a2)20,過CCBx軸于B.

(1)求三角形ABC的面積;

(2)如圖②,若過BBDACy軸于D,且AE,DE分別平分∠CABODB,求∠AED的度數(shù);

(3)y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案