【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認為最合適的方法計算:19×(﹣8)
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列三行數(shù):
-3,9,-27,81,-243,….
-5,7,-29,79,-245,….
-1,3,-9,27,-81,….
(1)第一行數(shù)是按什么規(guī)律排列的?
(2)第二行、第三行數(shù)與第一行數(shù)分別有什么關系?
(3)分別取這三行數(shù)中的第6個數(shù),計算這三個數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規(guī)定向東為正,向西為負,他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,A,B分別是l1,l2上的點,l3和l1,l2分別交于點C,D,P是線段CD上的動點(點P不與C,D重合).
(1)若∠1=150°,∠2=45°,求∠3的度數(shù);
(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市今年中考理、化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學實驗(用紙簽D、E、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.
(1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2)小剛抽到物理實驗B和化學實驗F(記作事件M)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①已知正方形ABCD的邊BC、CD上分別有E、F兩點,且∠EAF=45°,現(xiàn)將△ADF繞點A順時針旋轉(zhuǎn)90°至△ABH處.
(1)線段EF、BE、DF有何數(shù)量關系?并說明理由;
模仿(1)中的方法解決(2)、(3)兩個問題:
(2)如圖②,若將E、F移至BD上,其余條件不變,且BE=,DF=3,求EF的長;
(3)如圖③,圖形變成矩形ABCD,∠EAF=45°,BE=3,AB=6,AD=10,求DF和EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個面積為1的正方形,經(jīng)過一次“生長”后,在它的左右肩上生出兩個小正方形(如圖1),其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,生出了4個正方形(如圖2),如果按此規(guī)律繼續(xù)“生長”下去,它將變得“枝繁葉茂”.在“生長”了2 017次后形成的圖形中所有正方形的面積和是( )
圖1 圖2
A. 2015 B. 2016 C. 2017 D. 2018
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com